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Abstract—The cloud-native paradigm advocates agile develop-
ment and deployment of virtualized micro-services, introducing
a flexibility and dynamicity for service endpoints that may exist
in many locations of a provider’s network, not just data centers.
Such ability leaves open the problem of scheduling traffic from
clients to those possible locations. In this paper, we position
our solution to this problem at the data plane level, avoiding
the shortfalls of existing solutions in terms of latency and path
stretch. For this, we present a system model for forwarding
service requests based on compute information, with a distributed
scheduler realizing the traffic steering decision at line rate and
with measurable performance gains against existing network-
level solutions. We evaluate our solution against several design
aspects to provide insights for real-world deployments, while
quantifying performance improvements for use cases where such
scheduling decisions could indeed be performed at the level
of each service request. Here we show that our improvements
in request completion time may lead to serving up to 162%
more clients within the bounded request time that would ensure
acceptable quality of experience.

Index Terms—resource scheduling, service routing

I. INTRODUCTION

Service provisioning in recent years has been largely driven
by two trends. Firstly, virtualization has enabled the flexible
provisioning of service instances in a single or across network
locations. Technologies have progressed from virtual machines
to containers, enabling sub-second availability of service in-
stances. Secondly, the cloud-native paradigm postulates the
agile development and integration of code, decomposing ser-
vices into smaller sub-sets, i.e. micro-services, to be deployed
and scaled independently, yet chaining within a network
towards the original service objective. Herein, the acquired
deployment flexibility allows to bring services ‘closer’ to
consumers, localizing up to 72% of the overall network traffic
to the customer access networks, as observed in [1].

This work was supported in part by the European Commission under the
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To support this trend, ETSI, classically aimed at telecommu-
nications providers, has defined its Management and Orches-
tration (MANO) [2] framework to enable long-term placement
of compute resources and provisioning of the needed network
infrastructure. Those longer-term management decisions are
complemented by a lifecycle management (LCM) and control
capability of the supporting cloud-native platform [3], [4],
realizing shorter-term control policies within the management
lifecycle as set by the overall orchestration. This supports
threshold-driven adaptation to demand changes, e.g., for acti-
vating additional resources in case of measured peak times.

However, service placement and dynamic lifecycle manage-
ment leave open the problem of where to schedule (service)
traffic within an instantaneous set of active service instances,
i.e. finding the ‘most appropriate’ service instance to serve
the request at runtime of the overall system. Indeed, recent
studies show that service time in typical data centers is
good on average, yet its distribution is long-tailed [5], [6]
and emphasized on the importance of some form of service
instance selection and service rate control within the data
centers [7]. For a client outside of a particular data center, this
problem becomes harder, as service instance information is not
available prior to service instance selection. With this, even in
the case of an uncongested network, a significant percentage
of service requests might experience a low service quality
[6]. The dynamicity in many scenarios, corroborated in trials
[8], e.g., in terms of client load but also participating clients
overall, suggests that the decision, which compute resources
to use, must be equally dynamic to avoid herding effects [7],
i.e. overload situations in one or more of the local sites.

When realizing scheduling across several network locations,
those decisions are often tied into separating the naming
of the service from the locator-based routing of IP packets.
As a consequence, either application-level or DNS-based ap-
proaches are mostly employed. Due to the additional costs
for making a suitable decision (see [9], [10] for typical
latencies), dynamicity of traffic steering is often limited to
a longer-lived service transaction, i.e. a sequence of serviceISBN 978-3-903176-48-5 ©2022 IFIP



requests that is semantically bound together, for instance due
to state created by the individual requests. Another key issue
is the introduction of path stretch through routing requests
via decision points, such as load balancers or service brokers,
thereby further increasing latency and network utilization.

In this paper, we advocate to utilize knowledge from service
placement and lifecycle management layers in the decision to
provide a Compute-Aware Distributed Scheduling (CArDS)
capability directly at the data plane level. This links the con-
straints of executing the ‘best’ service to the way its packets
are being distributed, something ISP and service provider can
agree on to improve the overall service experience.

For this, we interpret the scheduling decision as a service
request routing problem at the data plane level. We solve this
problem through a system model for the access provider (e.g.,
an ISP, company, or mobile telecommunications network) that
realizes a service-centric decision at the start of every service
transaction, while supporting longer-lived affinities to specific
instances. For realizing those decisions, compute awareness
plays a key role, which is provided by abstracting the specific
compute capabilities of service instances as compute units,
those being assigned during service orchestration and lifecycle
management as an outcome of the demand-supply matching
done in the orchestration phase. Utilizing this longer-term
planning outcome allows for minimizing signalling, reduc-
ing the load on the routing system. The compute units are
taken into account within a weighted round robin scheduling
mechanism, realized in distributed schedulers that reside at
the network ingress, serving one or more clients connected
to them. Through this distribution, path stretch is avoided,
while the simplicity of the scheduling decision allows for
realizing the needed forwarding decision in hardware or via
programmable forwarding technologies. Most importantly, the
consideration of service-specific compute capabilities leads to
improved request completion times and therefore superior
end user experience, which is important for use cases in which
request times are bounded by acceptable quality of experience.

With this, our main contributions are as follows:
• We introduce a system model for a constraint-based

service routing infrastructure as a basis of our solution.
• We propose a lightweight, runtime compute-aware dis-

tributed scheduling (CArDS) solution for the access
network, realized at its data plane and minimizing the
signalling of compute resource information.

• We outline the realization of our solution in routed as
well ingress-egress architectures.

• We evaluate our solution along several design aspects,
also outlining its performance in a typical content delivery
use case. Our evaluations show that distributed operation
is feasible at scale, outperforming other data plane solu-
tions by up to 80% and enabling up to 162% more clients
being served at acceptable request completion times.

In the remainder of this paper, we present our system model
in Section II, followed by insights from related work in Section
III. We outline our solution in Section IV, followed by an
analysis in Section V, before concluding in Section VI.

II. MODEL & PROBLEM

In this section, we first provide an overview of our net-
worked system, before introducing the assumptions and model
to finally formulate the distributed scheduling problem, for
which we introduce our solution in Section IV.

A. System Overview

Motivated by our observation in the introduction on locality
of most service traffic, our system is comprised of a single
network domain, consisting of geographically distributed sites
at which service instances (SIs) for a given service S are
deployed, as illustrated in Figure 1. The network infrastructure
consists of semantic routers and forwarding nodes. Clients
issue service requests destined to a service identifier Sc, which
the incoming semantic router forwards towards a suitable
destination, e.g., one of the possibly many service instances.

This forwarding decision is realized as a two stage process.
First, the router determines all outgoing interfaces along which
an incoming service request could be sent. It then selects
the appropriate interface to be used by implementing the
scheduling decisions described in Section IV-E. In essence, the
semantic router performs an on-path resolution of the service
identifier provided in the request to (a direction towards) a
possible service instance; with this, the semantic router has
taken over the role of the DNS albeit utilizing the compute
awareness in the scheduling decision to forward packets.
Forwarding nodes then simply forward packets to next hop of
a semantic router, utilizing suitable encapsulation techniques.

Fig. 1: System overview

Crucial in our model is the support for instance affinity,
accommodating the likely situation that within a longer trans-
action (consisting of several service requests), client-specific
state is established at the service instance, such as in use cases
like online gaming, AR/VR scenarios, or also client-specific
transactions in a 5G control plane. As a result, any following
request will need to be sent to the same service instance. For
this, we distinguish a service request, which can be sent to any
available SI, from an affinity request, sent to a dedicated SI.



While a service request is directed to the service identifier as a
destination, the client will utilize the IP locator provided in the
response (in addition to the service identifier that allows for
associating the response to the original service request) to the
original service request when addressing any following affinity
request to the same service instance. This approach positions
the client as being the best point of determining what requests
belong to a longer affinity.

However, the realization of this affinity requires support
at the client. This could be realized through a dedicated
socket type, alongside existing TCP, UDP, or (raw) IP sockets,
managing the mapping of an initial service request to subse-
quent instance requests. For this, the socket implementation
utilizes service endpoint information provided in the response
to the initial service request, i.e. the usual tuple of source and
destination IP addresses and ports, in order to form subsequent
instance requests. Application libraries, such as for HTTP,
would need to be adapted to use this new socket type rather
than, e.g., a TCP socket, while applications based on HTTP
would remain unchanged. Approaches such as those in [3]
could also be used, relying on application protocol specific
proxies (e.g., for HTTP) rather than change clients directly.

Figure 1 shows a typical configuration of our system with
several distributed sites, hosting SIs of a particular service,
named here foo.com/bar1 (the deployed instances are marked
here, each assigned their shown IP locator, while other services
may likely be deployed in parallel). Each SI for our service
is assigned a number of compute units (defined in more
detail in Section II-B), shown here as numbers assigned to
the individual service instances with 10 compute units being
the overall capacity of the service in the system.

The figure shows a fully routed deployment of our system,
i.e. semantic routers hold next hop information of other
semantic routers in routing tables, similar to IP routing. One
implementation choice may use IPv6 extension headers [12]
to carry necessary service information from one SR to another.
However, we may also deploy our solution through a simpler
ingress-based architecture. Here, the semantic routers are only
deployed at the network ingress, utilizing the SIs locator
information as next hop information for forwarding packets,
i.e. sending a service request directly to the SI via available IP
routing. This model is akin to what the authors in [13] suggest.
Such ingress realization may also foresee the placement of
the semantic router directly at the client. Alternatively, the
semantic router may be an IPv6-based service element, utiliz-
ing methods such as Service Function Chaining (SFC) [14] or
Segment Routing [15] for routing service and instance requests
towards the (ingress) semantic router. In the remainder of this
paper, we will utilize the ingress-based model to simplify the
description of the operations.

B. System Model

Based on our overview in the previous subsection, we model
the network as a directed graph consisting of semantic routers

1We use a URL notation purely for readability purpose, with binary formats,
such as defined in RFC8609 [11], likely being used in real implementations.

as the nodes and the set of connecting links as the edges of
the graph. Forwarding nodes, although part of a real-world
deployment, are part of the interconnecting link between two
semantic routers in this model. For any link, we model the
propagation latency as a sequence of i.i.d random variables,
i.e. the resulting propagation latency is time-varying. We
also assume that suitable network planning provides enough
capacity for each link in our network, thus focussing our model
purely on the impact of distributing any incoming service
requests to any of the distributed service instances and the
resulting waiting times at those servers.

We assume that the SIs for a given service are already de-
ployed in the network, using methods such as those proposed
in [16]. Furthermore, for each server Sv in the distributed sites,
we assume a total processing capacity of CSv (CSv>0). We
furthermore assume that any SI for service S hosted on a server
Sv is assigned a compute unit CS with CS≤ CSv, where the
total compute units assigned to all SIs hosted on said server
do not exceed CSv

2. With this, each compute unit represents a
normalized processing rate that is the same across all server
deployments, while the compute unit defines the share of
compute resources that the assigned SI will receive from its
physical server resource. In addition, each SI is assumed to
hold a local buffer to store incoming requests, applying non-
preemptive execution of the service the SI implements. The
above assumptions are not restrictive, based on insights, e.g.,
documented in [17], that represent many real-world use cases.

Our model of compute units supports two different scaling
strategies, namely parallel execution and scaled processing.
In the former, service requests are executed with the given
processing time but possibly in parallel with the compute unit
denoting the number of parallel execution points in the SI.
This is akin to scaling out in existing container platforms with
parallel containers being created. Alternatively, the compute
unit may represent a factor to scale the processing time
proportional to the compute unit assigned to the SI.

C. Problem

The CArDS problem consists of deciding at runtime how
to assign incoming service requests to corresponding SIs
according to their compute capabilities, as expressed in their
respective compute unit assignment, while adhering to the
instance affinity of the overall transaction.

Our objective is to maximize the system’s processing
throughput by minimizing the (service) request completion time
(as the sum of the delays at semantic routers and SIs, together
with network propagation delays) for individual requests. The
fitting of any solution to this problem to other objectives, such
as jitter minimization, is left out of this paper.

III. RELATED WORK

Before outlining our solution in Section IV, let us briefly
discuss our insights into existing solutions for this problem,
having guided the goals for our solution.

2We see the assignment of those SI-specific compute units as part of the
overall placement process, providing an input into our scheduling solution.



The work in [18], which serves as one of our comparison
solutions in Section V, aligns with the distributed nature and
data plane realization of our solution, when applied to a
single function SFC. However, it does neither provide cross-
site compute awareness nor does it support flexible affinity of
service requests, both employed in our solution, leading to the
performance disadvantages observed later in Section V. Ex-
isting CDN solutions, such as Global Server Load Balancing
(GSLB) [19], DNS over HTTPS (DoH) [20] as well as HTTP-
level [21] or, more recently, transport-level [22] indirection
realize load balancing capabilities at higher layers of the
system, incurring latencies through, e.g., DNS resolution, or
inefficiently route requests from client to resolution system
and back before routing the actual request to the selected
instance, all of which leads to inefficiencies in highly dynamic
scenarios, as we will observe in our evaluation in Section V-D.

Routing protocols, such as EIGRP [23], provide the ca-
pability to utilize load and delay information as input into
the routing decision. EIGRP, however, does not provide any
support for affinity, therefore leading to problems in scenarios
in which individual packets of higher-level service requests
may be scheduled to different locations. The dynamic anycast
solution in [13] addresses this problem by mapping IP anycast
addresses (carrying a service identifier) onto binding IP loca-
tors of service instances, thereby supporting affinity towards
previously mapped instances. However, the metric-based deci-
sion requires frequent signalling towards all ingress nodes of
the network, creating an additional signalling load that would
increase with finer-granular load and delay reporting.

Message brokers like MQTT [24] or those utilized in
existing content delivery networks (CDNs) use an application
server to direct the service request to the most appropriate
server. Small affinities, particularly down to a single request,
would require, often significant, additional signalling. This in
turn would lead to more messaging and increased latency due
to the additional resolution step, while directing the traffic
via the application element introduces path stretch, further
increasing the experienced request completion times.

Resolution systems, such as the DNS, often do not allow for
constraining requests to resolve a service name, while service
brokers may use richer constraints but may lack the necessary
network constraints; a situation the IETF’s Alto efforts [25]
address albeit with the efficiency drawbacks found in other
application level solutions. More importantly, DNS requests
are rate limited and incur latencies in the order up to 100ms
per resolution [9], [10], making its use prohibitive at a request
level, while caching of DNS results also leads to problems of
possible stale entries delivered to clients.

Earlier work on fair queuing is also relevant here. The
work in [26] propose the use of hierarchical fair queuing to
provide network load balancing by scheduling packet flows
over available paths. However, the solution requires a priori
knowledge of each flow type’s share of assigned resources and
arrival rates, which also limits the supported dynamicity of the
affinities towards specific service instance. A similar limitation
applies to the work in [27].

IV. COMPUTE-AWARE DISTRIBUTED SCHEDULING

We now outline the realization of CArDS, performed at the
ingress semantic router (see Figure 1). We start with our goals,
followed by the individual aspects to realize them.

A. Goals

The analysis of related work in Section III has guided the
design for CArDS, resulting in the following design goals:

Utilize available compute awareness: We believe that
the awareness of what compute resources are available in
the distributed sites within the operator’s network is key to
improving the overall performance of the service, since it
allows for distributing more traffic to those SIs that are capable
of serving requests. Specifically, we consider the assignment of
SI-specific compute units in our request forwarding decision.

Support affinity of transactions: The scheduling of service
requests must take into account the semantics of longer-
standing transactions, otherwise leading to distributing re-
quests over several network locations, which necessitates a
distributed data management system to be in place. Specifi-
cally, we aim to support affinity of any length, including down
to scheduling single requests for fully stateless services.

Distributed realization to avoid bottlenecks: In order to
advance over centralized, e.g., broker, solutions, such as those
in [24], we aim at realizing our solution on the data path of
the service request, i.e. within the ingress semantic router (see
Figure 1). This necessitates a distributed realization, avoiding
thus any latency through centralizing the decision, aiming to
still perform close to a centralized solution.

Keep signalling overhead to minimum: Routing based on
constraints, such as load or latency, enables service awareness
but often comes with the drawback of needing to frequently
signal necessary constraint information to the decision points
in the network. Our solution aims at avoiding such frequent
update, instead utilizing long-term compute unit assignments.

Realization at the forwarding plane: Given the intended
scheduling on the data path of the service request, forwarding
performance can easily be hampered with additional opera-
tions to be performed on incoming packets that need forward-
ing. In order to ensure suitable performance, our solution is
intended for realization at the forwarding plane, i.e. at speeds
suitable for high-performance switches.

While previous work may realize some aspects above, we
see the novelty of our solution in addressing them jointly,
while providing superior performance. Our guideline for
achieving our goals is to prioritize the first three over the last
two albeit being conscious of their importance.

B. Assumptions

For the assignment of resources, expressed as compute units,
to service instances, the system model in Section II-B applies
here. We foresee two possible execution points to realize our
solution, namely directly at the client or at the ingress semantic
router. We assume the support for instance affinity, as outlined
in Section II-A. The impact of such affinity is evaluated in
Section V-D in a use case driven analysis.



C. Mapping Compute to Routing Constraints

Key to the compute-awareness of our solution is the map-
ping of compute units onto suitable routing constraints that
can be taken as input during the ingress forwarding decision.
For this, we assume the integration of the compute metric
assignment in placement methods and service orchestration
operations, such as those outlined in [16] and provided by
solutions such as ETSI MANO or other platforms.

In order to turn the compute unit assignments into routing
constraints, the service orchestration flattens and joins the SI-
specific compute units, shown in Figure 1 for the example
identifier foo.com/bar, into a compute vector CCV for a
specific service identifier C that represents a set of SIs.

D. Distributing Routing Constraints

The compute vector CCV needs distribution to the network
ingress points to perform suitable scheduling operations to-
gether with the respective locator information for each service
instance for the given service identifier C.

Key here is that this vector is seen as being rather stable
since it is part of the overall service deployment and placement
of service instances. Hence, any change will likely happen
infrequently only, if at all during the service lifetime.

As a consequence, extensions to existing routing protocols,
to distribute the computing vector among all routers, will un-
likely cause much additional overhead to the routing protocol
performance. As an alternative, a service management system
may directly signal the routing information to the ingress
semantic routers only. While we leave the specifics of the
distribution to a real-world implementation, we are confident
that the aforementioned rather static nature of compute unit
assignments will not pose any real challenge.

E. Ingress Scheduling Decision

This routing constraints are used for scheduling a packet at
an ingress semantic router to one of the possible many service
instances as follows, shown in Figure 2:

After checking for a routing table entry for the service
identifier S provided in the request, the suitable next hop (or
SI destination) is selected through a weighted round robin,
with the weights wSIi being the compute unit assignments (as
described in Section II-B) for the i-th service instance in the
compute vector SCV of the service identifier.

In order to avoid the need for implementing multiplications
for the weights (i.e. compute units), we assume that compute
units are distributed as sub-intervals instead, with the total
interval length being the sum of the compute units (each sub-
interval equals one compute unit) of all the available SIs for
the service identifier. This flattening of the weights into a
vector allows for realizing the weighted round robin through
a simpler counter k that cycles through that interval for any
new service request that arrives at the semantic router. For
every new increment of the counter, or wrap-around once the
end of the complete interval vector is reached, the scheduling
operations retrieve the next hop, i.e. SI destination information,
for the current counter and stores its new value in the routing

Fig. 2: Scheduling decision at ingress semantic router

table to be used for the next arriving request. Each semantic
router chooses a random initial value for k, therefore increasing
the randomness between individual semantic routers.

F. Realization at the Data/Forwarding Plane

The needed scheduling operations are limited to a routing
table lookup and a cycling of a counter over an interval
(stored as part of the routing table). Technologies such as
P43 can be used for realizing such operations at line speed.
Using structured binary names [11] for the service identifier in
our system allows for utilizing existing longest-prefix match
operations to determine the suitable interval in our operations,
while increment operations over such interval can be directly
realized through P4 operations. The work in [28] has shown
the realization of a constraint-based service forwarding system
in P4 at line speeds and its supported operations could be used
to realize CArDS scheduling decisions.

V. EVALUATION

In the following, we first evaluate the impact of various
design aspects on CArDS’ performance (Section V-B), cov-
ering the comparison against two other dynamic scheduling
mechanisms in Section V-C. Finally, Section V-D evaluates
CArDS’ performance in a video streaming use case to analyse
the effect of packet-level versus application-level requests with
longer affinities and subsequently, the performance of CArDS
against random packet-level request scheduling.

A. Setup

The CArDS implementation was written in Python and the
evaluations were performed using an event-based simulator
of custom Python libraries. The evaluation setup is illustrated
in Figure 3 and specified in Table I, unless otherwise stated.
The distribution of compute units across individual sites is
indicated in Table I, where S0 refers to the first site, and
the compute units per SI are indicated in brackets. CArDS is
realized in ingress semantic routers, shown in Figure 3 within
an ingress-based architecture as outlined in Section II-A.

All service requests are to one service function only, sent as
single packet requests. Each client sends service requests to its

3https://p4.org/p4-spec/docs/P4-16-v1.2.0.htm



assigned ingress, with the network load varied by configuring
the total number of clients. A 100% workload (network load
equal to maximum processing capacity of all service instances)
is simulated using 1550 clients (shown as a dotted grey line in
Figure 4), which are distributed equally across the 5 ingress
nodes. Our simulations vary the network load between 20%
and 110%, represented by 315 and 1710 clients, respectively.

The main metric of the performance evaluation is the
mean request completion time (RCT) of service requests,
referring to round trip time from issuing a request at the client,
processing at one of the service instance and returning to the
client. The scheduling latency is considered to be negligible
with link latencies and server processing times [18] as shown
in Table I. As a scaling strategy, we utilize parallel processing
(as explained in Section II-B) of incoming requests at service
instances, unless otherwise stated.

The simulations were repeated to ensure a sufficiently small
95% confidence interval, shown as lighter regions on either
side of the mean service completion time graphs in the evalu-
ation figures. Note that cases, where they are not visible, imply
that the interval was very small. Additionally, the minimum
latency that appears to be zero is in the milliseconds range.

TABLE I: Evaluation configuration parameters

Fig. 3: Evaluation network topology

B. Scenario 1: Design Aspects of CArDS

This section evaluates two key design aspects, namely that
of distributing the scheduling decision as well as the additional
use of site-local load balancers in conjunction to CArDS.

Central vs Distributed Scheduling: In order to understand
the effects of distribution as well as scaling the number
of distributed ingress semantic routers, we run a test case
with only one, centralized, scheduler. Given that our network
latency is independent from the number of traversed links, we
neglect the effects on path stretch, and therefore real-world
network latency, when realizing a single central scheduler, in
order to focus on the scheduling impact only.

We expect to observe better central scheduler performance
compared to distributed ones, as the centralized scheduler
will reduce contention by sending only one request to the
same compute unit in one round of scheduling, thereby likely
creating a smoother utilization of service instances. In con-
trast to this single central use of a counter (as explained in
Section IV-E) in our scheduling decision, those counters are
now distributed across schedulers without any synchronisa-
tion among them, which in turn increases the probability of
conflicting scheduling decisions. Our tests report an increase
of request completion times of around 11.3%, only when
the load approaches maximum capacity (i.e. 100% of the
total compute capacity). In other settings, we do not observe
any important difference between centralized and distributed
scheduling. In conclusion, distribution as such does not appear
to be problematic for scheduling.

However, there may be settings in which the ingress nodes,
and therefore the number of schedulers, scale disproportionally
beyond the number of compute sites. In fact, any deployment
with heavy compute centralization fits this situation. It is
therefore essential to check the effects of distribution when
this disproportion holds. To address this, we run tests in which
number of clients and schedulers alike scale up, ranging from
315 to 1710 as indicated above. Thus, for each load, we check
if that load is better scheduled by exactly one, a small, moder-
ate, etc. up to an extremely large set of schedulers. The finding
from the previous paragraph applies here too: only extreme
loads cause deterioration of distributed scheduling compared
with the centralized one. Although this deterioration grows
with the scheduling distribution scale (e.g. at 100% load, a
29% increase in RCT for 50 schedulers is observed, as opposed
to 11% increase for 5 schedulers), it stays in all cases within
reasonable bounds. For example, in the worst case, for the
highest load and 1550 schedulers, the service completion times
are around 50% higher than with the centralized scheduler.
Considering that 1550 schedulers would be highly distributed
in terms of network locations, thereby causing significant
path stretch when utilizing centralized scheduling instead, an
impact on overall latency needs weighing against the observed
50% increase in scheduling latency for distributed scheduling,
since the latter allows for avoiding such path stretch latency.

Scheduling to instances directly vs via site-local load bal-
ancers: CArDS supports scheduling service requests directly



to instances using their service identifiers or scheduling to the
DC ingress instead, which is then responsible for directing
the traffic inside the data center. The latter mode is preferable
for deployment scenarios which may not want to expose the
instances directly to network-level routing but use DC-internal
mechanisms instead. For our evaluation, we assumed such DC
ingress at the site level that acts as a simple ‘random’ load
balancer, i.e. being unaware of the computing capabilities of
the instances but instead routing packets to one of the local
instances uniformly at random. We found that the lack of
compute awareness at the load balancers has a significant
impact on the request completion times and this impact
increases with an increased network load. With a network
load as low as 30%, the mean RCT of scheduling to sites is
almost double than that of directly scheduling to instances,
while when the load is 80% of the compute resources, this
grows to more than 100 times higher. Although the sites
receive requests proportional to their compute resources, the
compute-unaware load balancers cannot distribute them to the
instances according to their capabilities due to their random
nature of distribution. Furthermore, the performance of using
site-specific load balancers is largely dependent on the network
topology, unlike scheduling to instances directly since the
latter simply iterates over the compute units of all compute
resources irrespective of their distribution across sites. This is
further observed in Scenario 2.

C. Scenario 2: Comparison with other Resource Schedulers

To evaluate the improvement over existing (network level)
solutions, we compare against two other distributed, dynamic
scheduling approaches: STEAM [18] and Random Scheduler.
The scheduling approaches were selected as viable alternatives
to CArDS that are easier to implement and do not require
additional load information or signalling. The random sched-
uler, like CArDS, is also positioned at the ingress nodes, but
is compute-unaware and so does not consider the instance’s
compute capacity in the scheduling decision. It performs a
random load balancing across the sites by selecting an instance
uniformly at random from all the instances of the network to
schedule a received request to.

On the other hand, STEAM’s approach to scheduling uses
load estimation and local instance state information to perform
batch scheduling at the sites [18]. As its primary focus was for
service function chaining applications, the admission control
policy module at the site schedulers would be able to forward
batches of requests to other sites when the site-local instances
were unable to serve them. We disable this admission control
part since forwarding to other instances is not supported in
the ingress architecture utilized here but rather a capability
of the specific service function chaining solution into which
STEAM was originally embedded [18]. Additionally, STEAM
does not consider the concept of compute units. Thus, to
keep the comparison with STEAM fair, the server policy of
processing requests is modified for this comparison in that the
servers scale processing rates according to their compute units,
instead of utilizing a parallel processing capability (see Section

II-B). Also, as the STEAM schedulers are positioned at sites,
unlike the other two schedulers, they require the ingress nodes
to forward the requests to them, so they can schedule these
requests to a local instance. For STEAM’s configuration, the
5 ingress nodes simply forward the client service requests
uniformly at random to the different sites with large batches
of 50 requests being used. The network topology and traffic
load is otherwise identical to that of Scenario 1.

Overall, our comparison allows to observe the effect of
factoring compute capabilities into the scheduling decision
as opposed to load estimations, as well as performing the
scheduling at ingress nodes instead of sites. We further evalu-
ate the impact of the compute unit distribution across sites as
well as instances within sites on the scheduling performance.
For this, we fix the total amount of compute units across all
instances to 50, while varying the allotment of those compute
units across instances and sites for the different configurations,
as specified in Table I.

While CArDS considers compute units irrespective of their
distribution in a network, both STEAM and the Random
Scheduler are compute-unaware. Although STEAM’s schedul-
ing mechanism allows it to avoid contention, it is limited to a
site, thereby being unable to influence the requests beyond the
site it is deployed at. As a result, the randomness of service
request distribution across sites is expected to have some
impact on the overall request completion times for STEAM.
To reduce this impact, it requires the compute units to be
uniformly distributed across sites. The Random Scheduler, on
the other hand, only considers the instances in the network,
irrespective of their spread across sites, with no concept of
compute units. As a consequence, it is expected to perform
well in a network with a balanced distribution of compute units
across instances. However, when the compute unit distribution
is very skewed, i.e. with a large variance in the minimum and
maximum compute capacities, it may perform very badly. We
detail our findings across the distribution configuration as three
sub-scenarios in the following.

Scenario 2a All three schedulers are expected to perform
well with these settings, as we can see in Figure 4a. We also
observe that even in such balanced setting, CArDS brings
benefits by significantly reducing request completion times in
high load settings (i.e. number of clients larger than 1300).
Figure 4d depicts the CDF of the request completion times in
the setting with 1245 clients, the point where the Random
Scheduler performance starts to diverge from the rest. We
observe that the tail is very heavy using Random Scheduler,
slightly lighter when using STEAM, while there is no tail
when using CArDS. Note that the x-axis is in logarithmic
scale. This indicates that not only CArDS improves the average
performance, but also significantly cuts the tail by distributing
the resources fairly among the clients.

Scenario 2b STEAM and Random Scheduler are perform-
ing very poorly as depicted in Figure 4b, while CArDS’s
performance is hardly affected by this imbalance, as it is
compute-aware.

Scenario 2c We observe that STEAM is able to handle



(a) RCT for Scenario 2a (b) RCT for Scenario 2b (c) RCT for Scenario 2c

(d) CDF of RCT in Scenario 2a (e) RCT for Scenario 3

Fig. 4: Results from Scenario 2 comparing the performance of CArDS with STEAM [18] and Random Scheduler (a through
d) as well as the performance in Scenario 3 (sub-figure e) in terms of mean request completion times (RCT).

resulting contention within a site, performing similar to 2a,
while Random Scheduler provides similar bad performance
as in 2b (see Figure 4c). Again, CArDS outperforms both,
providing a much lower request completion time at high loads.

The takeaway of Scenario 2 is that CArDS performs supe-
rior across compute distributions, compared to both STEAM
and Random Scheduler. However, given that STEAM and
CArDS both aim at avoiding contention, we identity their
combination as a worthwhile study in our future work, in an
attempt to have the best of both approaches.

D. Scenario 3: Use Case Driven Analysis

To evaluate the performance of CArDS in a typical appli-
cation that would benefit from improving completion times
of individual service requests across more than a single site
of service deployment, we considered a content retrieval use
case, which can often be found in localized service scenarios
such as those outlined in our introduction and described in
[8]. Content here may be video content, gaming assets (such
as graphics or video snippets), or also application updates
for current mobile applications or future edge applications
provided locally within a single operator network.

In those scenarios, several replication sites may be used,
while content can often be retrieved via stateless single re-
quests with often larger responses being returned to the client.
This is therefore an extreme scenario with scheduling being
possibly performed for individual service requests. Evaluating

CArDS’ performance in such use cases allows for comparing
against using long-lived approaches, typically used in applica-
tion level solutions, such as CDNs, IETF Alto [25], etc.

For this, we change the traffic pattern to represent real-life
video streaming traffic, while keeping the same network topol-
ogy as specified in Table I. Server processing was increased
to 600 requests per second [29], which simulates retrieving
roughly equally sized video chunks of 2 seconds length (a
typical setting in over-the-top video platforms). As the remain-
ing configuration aspects neither impact scheduling decision
nor performance of the scheduler, they are not included in the
scenario description. Transaction sizes are varied to represent
packet-level requests and long-lived transactions of 1 minute.
Clients join the system at different times, to simulate a more
dynamic scenario compared to 1 and 2. Note that the ultimate
number of clients in the system would be as shown in x-axis
in Figure 4e.

When transactions maintain longer affinities, as in appli-
cation level solutions, it results in high contention and very
high service completion times as shown in Figure 4e. Bringing
the scheduling decision down to packet-level allows for a
significant improvement in service completion times. This
translates into an improvement in overall utilization of the
system in terms of maximum supported clients as follows:
Assuming a chunk length of 2 seconds, 1.5 seconds can be
considered a request completion time that would result in an
acceptable user experience (allotting 500ms for the remaining



latencies) in terms of proper utilization of the retrieved content
at the client, e.g., for video playback. With this in mind,
random scheduling at packet-level already improves on the
maximum number of clients that can be served within the
above latency by 12.5%, almost 2000 more clients, compared
to the 1 minute affinity model. CArDS is able to further
improve on this by serving almost 24000 more clients with
the same service completion time compared to the random
packet level scheduling. Overall, with CArDS we can serve
162% more clients within the bounded latency compared to the
long-lived affinity scheduling, with improving by about 133%
more clients compared to random scheduling at packet level.

The main takeaway for Scenario 3 is that CArDS performs
superior compared to long-lived transaction solutions as well
as random scheduling, even in high load settings. Given
the currently limited dynamics in our scenario, our future
work will investigate the behaviour under more dynamic
client and load conditions, also to compare CArDS against
mechanisms such as those proposed in [30]–[33], which
apply embedding/placement solutions. We expect that those
solutions are unlikely to be efficient in those settings, as the
assignment/scheduling decisions performed by these solutions
need to be revised over time to adapt to these changes.
Such adaptations, however, take seconds due to the high
complexity of these solutions, and hence cannot be applied in
runtime [30], [33]. Hence, we would expect CArDS to provide
improvements over those solutions.

VI. CONCLUSIONS

We presented CArDS as a solution to integrate compute
awareness with the steering of service requests at the data
plane level. Our analysis demonstrates that this integration
leads to significant performance improvements over both
network-level and application solutions, while our design-
related analysis provides useful insights for deployment of our
solution. Most importantly, our solution allows for supporting
up to 160% more clients in a use case where request times
are bounded by acceptable user experience; an advantage that
would significantly lower costs for service delivery.

We plan on further studying the possible granularity of com-
pute unit assignments, e.g., driven by shorter term lifecycle
control policies, in terms of impact on signalling overhead.
We further aim at realizing our design through a network node
implementation, while also extending use case centric insights.
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