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ABSTRACT
Service-level traffic steering in the Internet has been using
an indirection-based model for decades now, using the DNS
to resolve a name to a locator, often complemented with
load balancing techniques. Contrasting this off-path real-
ization, service information as part of the data packet itself
may determine the one of possibly many communication
endpoints on-path while traversing the network. This paper
compares both design choices regardless of the specific deci-
sion mechanism used. For this, we assume a compute-aware
traffic steering mechanism for both approaches and deter-
mine latency penalties through off-path resolution steps as
well as distributing scheduling decisions to on-path network
ingress points. Lastly, we investigate latency variances and
resilience in an AR/VR scenario.

1 INTRODUCTION
Service provisioning in recent years has been largely driven
by two trends. Firstly, virtualization has enabled flexible
service provisioning in more than one network location.
Technologies have progressed from virtual machines to con-
tainers, enabling sub-second service availability. Secondly,
the cloud-native paradigm postulates agile development and
integration of code, decomposing services into smaller micro-
services, to be deployed and scaled independently, yet chained
towards a larger service objective. Such deployment flexibil-
ity allows to bring services ‘closer’ to consumers, terminating
up to 72% of traffic in customer access networks [17].
These trends continue to be realized with a decades-old

model that uses DNS for mapping service domains onto
one of a set of IP addresses, often based on load or geo-
information. Those IP addresses as well as port assignments
identify network interfaces and sockets for service access.
Such assignments typically remain static, contrasting against
the evolution of availability of resources and location inde-
pendence that the aforementioned trends have been driving.

The Internet community has developed solutions to cope
with the limitations of the DNS+IP model, such as Global
Server Load Balancing (GSLB) [12], DNS over HTTPS (DoH)

[21] as well as HTTP-level [19] or, more recently, transport-
level [32] indirection. At the routing level, efforts like [28, 36,
40] but also those related to information-centric networking
[39], instead propose to include suitable service information
into traversing service requests for on-path traffic steering,
without the need for an explicit resolution step.

This paper does not advocate any specific solution but
instead investigates the impact of either design choice on
end-to-end service performance. To cater to emerging re-
quirements of highly distributed computing resources, e.g.,
in 6G, we utilize compute-aware traffic steering decisions
[28, 31] instead of mere random ones, removing any im-
pact from needed signalling of decision metrics from our
considerations. Instead, we focus on the service transaction
performance in term of penalties incurred through indirec-
tion or distributed decision making. We further investigate
the dynamicity that can be supported in the form of service
transaction lengths, utilizing distributed service endpoints
with frequently changing traffic steering decisions, possibly
down to single request choices. We showcase the impact of
this dynamicity on parameters like end-to-end service la-
tency as well as maximum number of users being supported
in a given service deployment setup, showing that on-path
systems can significantly outperform off-path ones. With
this, our main contributions are as follows:

• We formulate the problem of traffic steering in a, e.g.,
virtualized, service environments (Section 2).

• We describe high-level details for off-path and on-path
systems-at-tests (Section 4) that adequately represent
existing and proposed solutions.

• We then outline a traffic steering mechanism (Section
5), representative for those used in existing systems.

• Finally, we present (Section 6) our performance com-
parison, outlining a reduced latency variance and higher
resilience for on-path systems in an AR/VR scenario.

2 PROBLEM FORMULATION
We now formalize the problem that the systems at test in
this paper intend to address. Let us define a service S, which
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is realized by possible service instances 𝑆1, ..., 𝑆𝑛 in dedicated
network locations 𝐿1, ..., 𝐿𝑛 . Furthermore, we assume one or
more clients, defined as 𝐶1, ...,𝐶𝑚 , wanting to access service
S as part of their interaction across the wider network.
The problem at hand can be described as finding a ‘suit-

able’ 𝑆𝑘 (𝐶𝑖 ) out of the n possible ones for every client 𝐶𝑖

wanting to send a request to S, where ‘suitable’ defines the
fulfilment of a service-specific optimality criteria across at-
tributes representing service-specific performance metrics.
Examples for suitability criteria may be shortest path,

lowest latency, highest throughput or more complex multi-
optimality criteria (see [25] to achieve multi-optimality rout-
ing that aligns with our model presented here).

3 RELATEDWORK
Beyond our algorithm in Section 5, there exist many methods
for DC-internal traffic steering, such as [27, 30, 35, 37]. As
a solution for Internet traffic steering, the solution in [31]
was designed for service function chaining scenarios but can
be applied for ingress-based scheduling, very much like the
work in [40], although the former merely applies site-local
load balancing, while the latter requires regular metric sig-
nalling to ingress points, incurring significant routing costs.
As we discuss in Section 5, we select the traffic scheduling
solution for our investigation with a focus on minimizing
control signalling, while still being compute-aware. Regard-
less, the mentioned works here may be applied as possible
decision logics to be implemented either on- or off-path.
New architecture proposals, such as those on content-

or information-centric networking, decouple content infor-
mation from locators. Examples presented in Named Data
Networking [39], NetInf [6, 9] or PURSUIT [7, 8], allow for
on-path decision making in some cases. Building on ICN con-
cepts, work in [15, 16, 18, 20, 29, 33, 38] has shifted focus on
service information being used for routing albeit embedded
into NDN interest-data packet delivery semantic. However,
the decision for steering traffic among a set of possible desti-
nations has not been the focus of those works.

We can observe from our study of related work that com-
paring a given algorithm as to its efficacy in an on- vs off-path
system has not been studied. We see insights into this com-
parison as crucial for postulating the idea of on-path traffic
steering as a new direction for routing in the future Internet.

4 SYSTEMS AT TEST
We distinguish two categories of systems that address the
problem in Section 2, termed off-path and on-path in short
and illustrated in Figure 1.
Two key aspects need to be realized by those systems.

First, data transfer at the IP level to the serving service in-
stance (out of the set of possibly many choices) needs to be

Figure 1: Off-path (blue arrows) vs ingress-based on-
path resolution (red arrows)

preceded with an explicit step of identifier resolution, where
such identifier may be encoded as, e.g., a uniform resource
locator (URL) or a binary encoded structured name [34].
Second, the continuity of a service transaction must be

ensured, where a transaction consists of one or more ser-
vice requests. The continuity here relates to any subsequent
service request needing to be directed to the same service in-
stance that has been initially resolved in the aforementioned
resolution step; this is due to ephemeral state that may be
created during the transaction and would otherwise require
explicit handling, e.g., through a shared database or similar,
if the service instance was to change during the transaction.
Let us outline in the following how both our systems-at-

test realize those key aspects.
Off-path resolution is characterised through resolving

service names through an explicit indirection with opera-
tions off the path of the actual data transfer, as illustrated in
Figure 1 with bold blue arrows. For this, an initial indirection
is sent from the client to a separate indirection architecture,
returning the IP locator for the chosen service instance, fol-
lowed by the data transfer via the intermediary IP routers
throughout the transaction. Utilizing different service in-
stances across different transactions is realized by repeating
the (off-path) resolution step for every new transaction. Here,
client-side caches must be suitably flushed to avoid using
stale resolution state which may point to the wrong ‘best’
instance at the time of the renewed resolution.
There are a number of examples for indirection architec-

tures. The Domain Name Service (DNS) provides the most
used indirection for resolving domain names into IP locators.
Extensions to DNS allow for transporting the DNS request
over HTTP [21], as often used by cloud providers, such as
Google or CloudFlare, to unify service provisioning with the
resolution service leading to the services. In this case, the
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indirection architecture would reside within the point-of-
presence (PoP) shown in Figure 1 albeit separately managed
from the service infrastructure which may eventually be
used as a result of the indirection.

PoP providers also often provide sophisticated load balanc-
ing solutions, such as Global Server Load Balancing (GSLB
[12]), to select one out of possibly many network locators
based on server and network load information. In that case,
the indirection step shown in Figure 1 comprises of many
more steps inside the indirection architecture.

Indirection architectures may also overlap with the service
infrastructure, such as those provided in PoP, when using
methods like QUIC load balancing [32], where the initial
indirection occurs to a service instance, which then redirects
to another service instance, either in another or the same PoP
site. The same occurs when applying HTTP-level indirection
[19] instead albeit at higher, here HTTP, layer.

Common to all approaches is the complexity through ad-
ditional signalling as well as mapping operations, where the
latter often involve application-level database lookups at
various entities in the indirection architecture; a complexity
that is significantly different from that for low level packet
forwarding operations, with Section 6.1 providing a model
that captures the latency for this complexity.

Other approaches, such as those defined in the IETF Alto
[22] efforts, provide alternatives to DNS-based indirection
architectures but we limit our evaluation in this paper to
those based on DNS due to their widespread use.
Ingress-based on-path resolution differs crucially, as

the name suggests, in performing the resolution from a ser-
vice identifier to a network locator on-path from the client
to the chosen service instance. That means that a mapping,
akin to the name-locator mapping in off-path systems, occurs
albeit not requiring the explicit indirection architecture. This
is shown in Figure 1 through the bold red arrow from the
client to the on-path ingress node (OPIN), which is mapped
onto a dashed red line through some sort of mapping process.
Subsequent requests within the same transaction may then
use direct IPv6 routing, i.e., following the blue dashed line
route. An IP router and OPIN may be collocated but OPINs
may also be dedicated (shim overlay) nodes. Given that map-
ping occurs at the OPIN, different service instances can be
used for subsequent transactions, if suitable knowledge for
such renewed mapping exists at the OPIN.
Recently, several proposals have been made for on-path

architectures. The approach in [40] encodes a service identi-
fier as an IP anycast address, while the approaches in [28, 36]
use a separately encoded service address, e.g., provided in
an IPv6 extension header. All approaches rely on mapping
the initial service identifier to one of several possible IP ad-
dresses, where the mapping is being announced to the OPINs

in a separate announcement step, akin to a route announce-
ment in IPv6. This mapping operation is similar to a next
hop table operation in existing IP routers (where the possibil-
ity to hash service names may improve on the table lookup
performance, not requiring longest prefix match operations)
and can therefore likely support high mapping rates.

5 ALGORITHM USED
As outlined in the introduction, our choice of traffic steering
algorithm needs to fulfil two requirements. Firstly, it has
to be compute aware to cater to emerging requirements in
edge computing scenarios [26, 40], where the ‘best’ instance
may often not be the best one to steer traffic to. A range of
solutions, such as those in [12, 28, 30, 31, 35, 37], provide this
capability, e.g., using compute load and network latency for
the decision making. Secondly, we want to focus our evalua-
tion on the traffic steering decision only, thereby leaving any
insights on potential costs for distributing suitable metric
information to the decision points for future work.
For those reasons, we selected CArDS (compute-aware

distributed scheduling) [28], realized either in a central, off-
path solution or across on-path ingress points (the OPIN
in Figure 1). Let us provide some details on this algorithm,
referring to [28] for more details, including a comprehensive
evaluation of various design aspects of the solution.

CArDS abstracts the compute capabilities, assigned to each
service instance for processing incoming service requests, as
compute units [28]. Those may represent, e.g., the number of
CPUs or threads assigned to the service instance at the local
compute resource; this fulfils our second requirement above.
The compute units and IP network locators of all service

instances are distributed, e.g., using a central management
interface or a routing protocol, to all OPINs (for on-path
architectures) or to the off-path infrastructure. It is assumed
here that compute unit assignments are done during the
deployment of the overall service and thus only change in-
frequently, addressing our first requirement above.
With the compute units available per network locator

at which the compute resources are reachable, the traffic
steering decision is that of a weighted round robin, where the
compute units are used as weights. With this, traffic is sent
to service instances in proportion to their computational
capabilities, captured in those compute units.

As argued in [28], for on-path systems, the scheduling de-
cision can be implemented in data plane technologies such as
P4 [11], with [36] outlining a realization over available pro-
grammable switches. With this, we can assume on-path de-
cision latencies close to line speed (for ingress points, which
usually run at lower forwarding speeds), resulting in little
to no penalty for such decision in on-path architectures.
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Figure 2: Signaling complexity in GSLB

6 EVALUATION
The following evaluation first outlines insights to the initial
request latency that is incurred for the first request of a (pos-
sibly longer) transaction, followed by evaluating the impact
of distributing traffic steering decision compared to an ide-
alised central solution, before discussing how well smaller
affinities may be supported by on- and off-path systems. We
close with an AR/VR use case evaluation.

6.1 Initial request latency
To shed light on the latency for the initial service request that
needs steering to one out of possibly many service instances,
we first investigate the typical complexity of a modern indi-
rection architecture. Figure 2 shows a typical DNS-based load
balancing architecture for CDNs, as can be realized through
GSLB [12] or DNS over HTTP [21].
We can see that there may be different levels of indirec-

tions, which all depend on the given service identifier. The
authors in [24] capture these indirections as probabilities for
referrals, leading overall probabilities for average response
times for DNS resolution requests. This work, however, did
not account for CDN deployments at the scale of today’s
Internet, where many services are ‘frontloaded’ so that the
probability for additional referrals become rather low.

To align Figure 2 to simpler indirections, as found in HTTP
[19] or QUIC indirections [32], we focus in our investigation
on cases where CDNs are able to resolve and, thus, load
balance services as part of their infrastructure; this involves
steps (1) and (10)-(16) in Figure 2 only.

We can observe that signalling messages are realized at the
application layer, e.g., as DNS over HTTP, while operations
include application-level, e.g., database, operations. Studies
[14] show that first hop resolver resolution in a CDN may

provide latencies of between 10 to 100ms, compared to lower
10ms for operator-provided DNS [4]. Although the latter
yields lower latencies, it is the coupling with a load balancing
decision that is of interest to us.

Hence, we will assume an initial request latency for off-path
systems of around 45ms, used in our following evaluations.

Note that this represents the best case for off-path systems,
where significantly longer latencies, possibly in the 100s of
milliseconds [13], may occur if services are not CDN-hosted.

Furthermore, this latency may accumulate when consider-
ing typical Internet scenarios since a higher-level user expe-
rience, e.g., loading a web page in a browser, often consists
of many parallel and consecutive service transactions, each
incurring DNS interactions. In 2019, a web page loaded on a
desktop included on average 70 resources (75 for a page on
mobile access) [3], each requiring DNS resolution albeit some
resolved through the client-local cache. Furthermore, the av-
erage time to first byte (TTFB) was 1.28s for desktop and
2.59s for mobile access [3], while it took, on average, about
4.7s to load a page on a desktop versus 11.4s on a mobile
[3]. However, webpages had an average size of 1.9 MB (for
desktop access) or 1.78 MB (for mobile access) [3]. Although
this discrepancy between web page size and time to load is
likely not just to blame on DNS operations, they do play a
key role, as also shown in [13], with further studies needed
to quantify the exact impact of frequent DNS operations.

For on-path systems, we can observe that there is no addi-
tional signalling, due to the on-path nature, while the com-
plexity may often be significantly lower, when relying on
solutions that are based on existing IP forwarding solutions,
e.g., [28, 36, 40], therefore leading us to assume near lines
peed latencies for on-path systems.

6.2 Impact of On-Path Distribution
The CArDS algorithm was evaluated in [28], comparing an
idealized centralized scheduling with an increasingly dis-
tributed one for a traffic model of uniformly distributed
arrivals between 2.5 and 7.5ms of single service requests
(i.e., no affinity) with overall 20 service instances distributed
equally across 5 sites, with an added network latency of
7.4ms, while the number of clients ranges from 315 to 1710
clients, representing 20% and 110% load, respectively.
The comparison showed that a distributed realisation

shows no significant difference in mean request comple-
tion time. Only when approaching full system capacity, the
distributed system performs up to 11% worse than the cen-
tralized one [28]. These performance insights also sustain, if
the number of ingress points scales significantly to several
hundreds (up to 3105 were simulated in [28]) while main-
taining a reasonable load.
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Let us put these results into the context of, e.g., 5G mobile
networks. Here, the User Plane Function (UPF) [2] is respon-
sible for handling user data traffic, enabling decentralization
of packet processing and traffic aggregation closer to the
network edge. The UPF is a perfect place to integrate on-
path scheduling in a 5G network, i.e., realizing the role of
the OPIN in Figure 1 within 5G. The report in [1] gives an
overview of possible and typical deployments. In the most
decentralized deployment as an Access Edge ([1] Figure 4.5
on page 43), UPFs are deployed in access edge clouds, close to
the radio access nodes (base stations), acting as ingress nodes
for traffic from at least several base stations. For a country
wide 5G network deployment, one can count with a range
of UPF instances from few hundreds to several thousands.

Therefore, we can conclude that on-path service scheduling
aligns well with scalability needs of 5G system rollouts.
Note that the centralized solution in [28] is an idealized

on-path solution. For any off-path solution, the resolution
latency of about 45ms (see Section 6.1) must be added to the
initial request for both centralized and distributed solutions
that is observed in [28]. Hence, a centralized off-path solu-
tion performs significantly, i.e., about 7 times, worse than a
distributed one, while only load situations close to 100% will
close that gap to a distributed on-path solution.
With a system load of 110% representing 1710 clients in

this evaluation, the observed load on the indirection infras-
tructure (exhibiting more than 200000 requests per second
with the chosen interarrival model in [28]) would pose the
real challenge, as we will discuss in our next sub-section.

6.3 Supporting Small Affinities
To shed light on supporting small affinities, let us take an
AR/VR example. Here, chunk retrieval techniques are used
by N clients to obtain replicated content from a set of dis-
tributed service instances. Typical chunk lengths, according
to [41], are 500ms albeit relying on ‘early termination’ capa-
bilities of HTTP/2 or QUIC [23], where the client’s physical
movements may lead to terminating an ongoing chunk re-
trieval, followed by the relevant next chunk. This may lead,
in highly dynamic VR/AR scenarios, to retrieval intervals
of few tens milliseconds to prevent motion sickness. For in-
stance, if we assumed an average retrieval interval of 100ms
for every client, N*10 retrieval requests per second would
be sent, all of which would need a traffic steering decision.

DNS server configurations usually limit clients to few tens
of requests per minute [5], while providers such as Google
apply ISP-level rate limits, by default 1500 queries/min per
public IPv4 address [10]. With this in mind, despite the state-
less nature of chunk retrieval, transaction lengths for off-path
systems would require to be rather long, in the order of min-
utes or even for the entire session. Particularly problematic

here is the dependence on the overall number of users, not
just for the scenario itself, but for all users accessing an ISP’s
network (in cases where DNS rate limitations are applied
across all ISP users), making it difficult for the application
itself to gauge the right transaction length to be used.

On-path systems, on the other hand, are merely limited by
the capability to map from service identifier onto network
locator in the OPIN. As previously mentioned, work in [28,
36, 40] has shown this to be feasible at near line speed.

6.4 Impacting Use Case Performance
We now use our AR/VR use case to show how on-path traf-
fic scheduling impacts use case performance, measured in
latency variance and resilience to service availability; both
critical aspects in providing superior user experience.

For this, we use the Python-based simulation environment
described in [28] with the setup described in Section 6.2,
i.e., clients are uniformly distributed across 5 ingress nodes,
retrieving their content from service instances across 5 sites
with equal compute capacity. Clients join the system within
uniformly distributed short periods of time at the beginning
of the total simulation time of 10 minutes.
Based on our insights in Section 6.3, the client request

interarrival times 𝑡𝑖 are set to 100ms (to account for possible
early terminations due to client interaction) with a random
variation of 5ms. We assume each content server is able to
sustain 100MBit/s throughput, serving about 100KByte per
AR/VR chunk. With this, we set the a processing rate of 125
requests per second for each service instance in our setup.
For an acceptable user experience, we assume 10ms for

client-local packet handling (buffering, decoding and dis-
playing), adding a further 15ms margin for possible packet
latency variations; leading to an upper latency bound of 75ms
after which we would expect service degradation.

We first evaluate the impact of choosing different affinity
lengths on the request completion time (RCT). For this, we ap-
ply affinity at request-level together with two longer affinity
modes. In the first, a client will be assigned to a service in-
stance for the entire duration of the session (infinite affinity),
while we also realize a 1 minute affinity, where each client
performs the resolution steps for a new transaction every
minute, thus adding a 45ms indirection latency to the first
request of the affinity, as per our insights from Section 6.1.
Figure 3 (a) shows the CDF for the RCT in our setting

for 375 clients (60% load). While the mean RCT values are
very close for all affinity modes, the CDF tails significantly
differ, i.e., experiencing significant differences in latency vari-
ance. This is also reflected in a higher number of requests
exceeding the upper latency bound of 75ms with 0.014%, 8.2%
and 8.7% of packets for single request, 1 minute and infinite
affinity, respectively.
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(a) CDF for 𝑡𝑖 = 100𝑚𝑠 (b) CDF for 𝑡𝑖 ∈ [100𝑚𝑠; 500𝑚𝑠] (c) Average RCT in server overload case

Figure 3: Results for AR/VR use case

This observation prevails when altering the clients’ inter-
arrival time to being uniformly distributed between 100ms
and 500ms for each request with the number of clients scaled
accordingly from 185 to 1875, shown in Figure 3 (b) for 1125
clients (60% load). Although, as expected, the mean RCT in-
creases due to the larger variance in interarrival times, the
differences in the respective CDF tails prevail. We explain
this behaviour with the increased diversity of choice for N
clients among k=20 service instances, compared to assigning
𝑁
𝑘
clients to a single instance, thereby reducing contention

by smoothening instances’ input queues.
Improving RCT variance is not the only benefit of selecting

service instances at request-level; they may also improve
on resilience against localized contention, e.g., caused by
internal HW failure or overload. To simulate this, we reduce
the processing rate for service instances on site 0 to half of
that of all other sites, starting at 4 minutes in the simulation
and lasting for 2 minutes. The client load is maintained at
70%, i.e., 435 clients, to ensure high system contention.

Figure 3 (c) shows the average RCT along 10 minutes of
simulated time. The black line serves as the baseline average
RCT, i.e., not having any contention at the sites but observing
the already existing contention through the high system
load. The red line shows the average RCT for those clients
associated with the affected site 0 in infinite affinity mode.
Since clients are not assigned to any instance for longer than
one request in single request affinity, we show as the blue
line the average RCT for all clients in single request affinity.

As expected, we can see from the red line that the clients
at the affected site are severely impacted by the contention
with an up to 21 times increase in RCT, while request-level
affinity lowers this impact significantly to 4.6 times.
However, the above results cannot be equally applied

across on- and off-path systems, since the latter incurs the
aforementioned 45ms latency for every request being sent

(as well as creates significant load on the indirection architec-
ture). Reducing the affinity length, possibly down to single
requests, significantly increases the load on the indirection
architecture, as already discussed in Section 6.2. For our use
case, this load increases to up to 6250 requests/s when mov-
ing towards full system capacity. As discussed before, usual
rate limits in DNS system would not support such rates, mak-
ing thus the use of small affinities as a means to increase
system utilization impossible.

We can conclude from our use case evaluation that applying
request-level affinities significantly improves RCT variance and
resilience to local contention, while applying them in on-path
systems avoids the significant additional costs for indirection.

7 CONCLUSION
We compared traffic steering performance in on- vs off-path
systems, where the steering is compute-aware and requires
little control signalling. Our analysis demonstrates that off-
path systems suffer from significant signalling and complex-
ity overhead associated with explicit resolution steps, while
on-path systems allow for significantly smaller transaction
lengths, served in distributed service instances. In emerging
use cases, such as AR/VR, on-path systems significantly re-
duce latency variance as well as increase resilience to local
contention in the server infrastructure, thereby positively
improving on overall end-user experience, while avoiding
the significant costs that off-path systems would require for
scaling to the number of requests entering the system.
We plan on enhancing our insights by studying the im-

pact of distributing control signalling for on-path systems
compared to the centralized realization of off-path systems.
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