

FUlly DisinteGrated private nEtworks for 5G verticals

Deliverable 4.2

Final Technical Validation of 5G Components with Vertical Trials

Version 1.0

Work Package 4

Main authors	Luís Cordeiro, João Fernandes, André Gomes (ONE)		
Distribution	Public		
Date delivered	06/03/2023 (M31)		

© FUDGE-5G project consortium partners

Partners

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N $^{\circ}$ 957242.

Disclaimer

This document contains material that is copyright of certain FUDGE-5G consortium partners and may not be reproduced or copied without permission. The content of this document is owned by the FUDGE-5G project consortium. The commercial use of any information contained in this document may require a license from the proprietor of that information. The FUDGE-5G project consortium does not accept any responsibility or liability for any use made of the information provided on this document.

All FUDGE-5G partners have agreed to the **full publication** of this document.

Project details

Project title:	FUlly DisinteGrated private nEtworks for 5G verticals
Acronym:	FUDGE-5G
Start date:	September 2020
Duration:	30 months
Call:	ICT-42-2020 Innovation Action

For more information

Project Coordinator

Prof. David Gomez-Barquero Universitat Politecnica de Valencia iTEAM Research Institute Camino de Vera s/n 46022 Valencia Spain

http://fudge-5g.eu info@fudge-5g.eu

Acknowledgement

FUDGE-5G has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 957242. The European Union has no responsibility for the content of this document.

Abstract

This document describes the efforts towards the validation of 5G components with vertical trials. In D4.1 was described a common validation methodology, followed by a description of the trial's validation for each use case during the first phase of the project. In D4.2, following a different approach, the document goes further into detailing the validation of each 5G component.

Contributions and reviewers

Contributors

Partner	Authors			
ONE	Luís Cordeiro, André Gomes, João Fernandes			
UPV	Carlos Barjau, Borja Iñesta, Josep Ribes			
ТНА	Franck Scholler			
5CMM	Manuel Fuentes, Alberto Beltrán, David Martín-Sacristán			
FHG	Pousali Chakraborty, Hemant Zope, Marius-Iulian Corici			
IDE	Sebastian Robitzsch, Mohamad Kenan Al-Hares			
02M	Peter Sanders			
ATH	Daniele Munaretto, Nicola di Pietro			
СМС	Mika Skarp			
UBI	Thanos Xirofotos			

Reviewers

Reviewer	Partner

Executive Summary

FUDGE-5G aims to perform field trials for the validation of its platform in five vertical use cases, which should target a Technology Readiness Level (TRL) of 7 or above, i.e., system prototype demonstrations in an operational environment. After reporting the interim technical validation efforts in D4.1, this deliverable (D4.2) aims to report on the final technical validation efforts of FUDGE-5G components, both in the field and lab environments.

Each use case organized trials involving prominent stakeholders and set up the components to obtain tangible results. Hence, for each trial, the methodology involved the collection of KPIs from all the 5G components while obtaining relevant feedback from the stakeholders, which combined provide both means for the technical validation of the 5G infrastructure and to conduct a gap analysis between the 5G measured performance and the technical requirements and KPIs stemming from the vertical use cases (use case validation).

The contents of this document are driven towards the validation of each 5G component, while D4.3 will give further detail on the validation of the platform in a trial context.

Abbreviations

5G	5 th Generation of mobile communications
5GC	5G Core
AF	Application Function
AMF	Access and mobility Management Function
API	Application Programming Interface
AUSF	Authentication Server Function
E2E	End to End
gPTP	generic Precision Time Protocol
LAN	Local Area Network
NEF	Network Exposure Function
NF	Network Function
NOW	Network on Wheels
NPN	Non-Public Network
NSA	Non-Standalone
PLMN	Public Land Mobile Network
PNI-NPN	Public Network Integrated-NPN
РТТ	Push To Talk
PPDR	Public Protection and Disaster Relief
RAN	Radio Access Network
SBC	Session Border Controller
SCP	Service Communication Proxy
SEPP	Security Edge Protection Proxy

- SFVO Service Function Virtualization Orchestrator
- SMF Session Management Function
- SA Stand-Alone
- SH Service Host
- TRL Technology Readiness Level
- TSi Ingress Timestamping
- TSN Time Sensitive Networking
- UC Use Case
- UDM Unified Data Management
- UE User Equipment
- UPF User Plane Function
- VM Virtual Machine

Table of contents

Disclaimer		
Abstract		
Contributions and reviewers		
Contributors	4	
Reviewers	4	
Executive Summary	5	
Abbreviations	6	
Table of contents	8	
List of Figures	10	
List of Tables	12	
1. Introduction	13	
2. FUDGE-5G Platform	14	
2.1. Orchestration	15	
2.2. Validation Results	19	
3. 5G Cores	21	
3.1. ATH	21	
3.2. CMC	23	
3.3. FHG	24	
3.4. Microservices/NFs	26	
3.4.1. NEF	27	
3.4.2. CBCF	30	
3.4.3. AUSF	31	
4. 5G Devices	33	
5. Innovations	38	
5.1. VAO	38	
5.1.1. Technical Testing of the VAO	38	
5.2. Thales Slice Orchestrator	42	
5.3. 5GLAN	44	
5.4. TSN	45	

5	5.5.	SBC
5	5.6.	Multicast
6.	Со	nclusions
7.	Re	ferences
8.	An	nex A
9.	An	nex B

List of Figures

Figure 1: FUDGE-5G use case validation methodology 1	3
Figure 2: Topology of Staging Testbed with FUDGE-5G Platform Component 14	ts
Figure 3: Latencies Among Service Communication Proxy Platform Components in Milliseconds 1	n 5
Figure 4: Latency Analysis of the Platform's Service Communication Prox Across Locations	(y .6
Figure 5: TCP Throughput Analysis of the Platform's Service Communicatio Proxy Across Locations 1	n 8
Figure 6: Orchestration Times over Number of Service Functions (LXC based 20	(k
Figure 7: Group call via NEMERGENT PTT app2	2
Figure 8 Cumucore architecture2	3
Figure 9: 5G Core deployed for 5G Virtual Office use case 2	5
Figure 10: 5G Core deployed at three locations (Berlin, Valencia, Oslo) aninterconnected for Interconnected NPNs use case2	d 6
Figure 11: NEF base test setup 2	9
Figure 12: CBCF representation 3	1
Figure 13: Traces from CBCF alert message delivery 3	1
Figure 14: List of AUSFs registered at NRF 3	2
Figure 15: 5G modem developed by Fivecomm and validated in ABB lab, a part of UC4 final trials. 3	IS 3
Figure 16: 5G RTT latency results (ping) at Telenor premises before movin to ABB.	g 4
Figure 17: 5G throughput (limited by the UL) results (iperf) at Teleno premises before moving to ABB. 3	or 4
Figure 18: 5G network architecture. Case for 5G latency from the device to the 5GC.	0 5
Figure 19. 5G RTT latency results (tests 1 to 4). 3	6

Figure 20. 5G one-way latency results (test 1).	37
Figure 21: VAO Deployment over IDE's Testbed.	38
Figure 22: Deployment of Onesources's Vertical service on London Testl 41	bed
Figure 23: Deployment of Onesources's Vertical service on London Testl 41	bed
Figure 24:Successful Connection on two deployed Vertical components	42
Figure 25: Slicing Orchestrator scenario	43
Figure 26: Scenario setup	44
Figure 27 Industry 4.0 test set-up	45
Figure 28: TSN network deployed at ABB living labs for time synchronizat testing	ion: 46
Figure 29: Equipment deployed at ABB living labs for time synchronizat testing	ion: 47
Figure 30: Trace for encrypted message exchange from FOKUS NPN to L NPN through SBC	JPV 49
Figure 31: FOKUS SCP received message from AMF for authentication	49
Figure 32: UPV SCP received message from FOKUS SCP for authentication	149
Figure 33: UE belongs to UPV network registered and connected FOI network	KUS 50
Figure 34: 5MBS prototype diagram, with the two tests carried out: ousing iperf and documented in D2.5, and the other featuring video delivand measuring the bandwidth over N3mb.	one very 50
Figure 35: Bandwidth captured over the N3mb of the 5MBS prototype, w a variable number of UEs.	vith 51
Figure 36: Video delivery experiment over 5MBS, using 2 Multicast flows 2 UEs who are attached to 1 gNB (left) and 2 gNBs (right).	s to 52

List of Tables

Table 1: Inter-SCP Component Latencies, as Reported by the SDN Co Floodlight	ontroller 16
Table 2: End-to-End Latency Measurements for the Service Commu Proxy	nication 17
Table 3: End-to-End TCP Throughput Measurements for theCommunication Proxy	Service 18
Table 4: NEF test setup 1 details	27
Table 5: NEF test setup 2 details	28
Table 6: Microservice NEF tests results	29
Table 7: Microservice NEF test results (HTTP 1.1 only)	30
Table 8: 5G Throughput	37
Table 9: Unit Tests Performed to validate the deployment.	39
Table 10: Integration Tests performed.	40
Table 11: Test results	45
Table 12: Time synchronization in TSN device connected UE	46
Table 13: Time synchronization in fixed TSN device	47

1. Introduction

FUDGE-5G is split into 5 vertical Use Cases (UCs), which aim to validate the technology innovations brought by the FUDGE-5G platform. These use cases follow a realization methodology, which is depicted in Figure 1.

Figure 1: FUDGE-5G use case validation methodology

This deliverable focuses on the technical validation of each 5G component in trial and lab contexts. These are divided into five different sections:

- FUDGE-5G Platform
- 5G Cores and integrated microservice based Network Functions
- 5G Devices
- FUDGE-5G Innovations

2. FUDGE-5G Platform

The technical validation of the FUDGE-5G platform components, introduced in this section, focuses on providing a numerical assessment of the routing and orchestration functionality of the eSBA platform. Figure 2 illustrates the infrastructure and platform topology of the staging testbed, which is used for integration and validation purposes.

Figure 2: Topology of Staging Testbed with FUDGE-5G Platform Components

The dotted grey boxes represent OpenStack-managed compute hosts, except for the node "far-edge-1" that represents a LXC host machine. The compute hosts are interconnected by hardware-based Pica8 SDN switches that offer 1G ports towards the compute hosts and 10G interfaces among each other. This results in a star-like topology with a triangular shape at the core.

Each coloured box in the figure stands for an instance of a platform component. For OpenStack-based coloured boxes, these are Virtual Machines (VMs). For the ones on the "far-edge-1" compute host, these are LXC containers. The grey box at the bottom is a commercial off-the-shelf gNB from Amarisoft. At the top of the figure, the grey box "sia-vpn" offers secure remote access for experimenters (FUDGE-5G partners) to orchestrate their services.

The next two subsections will provide an analytical assessment of the platform's routing and orchestration performances in the staging testbed.

2.1. Orchestration

The assessment of the routing component of the FUDGE-5G platform, the Service Communication Proxy (SCP), is going to focus on latency and throughput. As mentioned in the introduction, the SCP leverages and SDN-underlay in the infrastructure composed of hardware SDN switches and utilises Open-vSwitch inside the Service Proxies (SPs) where IP traffic is terminated and translated into NBR-internal semantics (i.e. Information-Centric Networking). As a result, when querying the SDN controller (Floodlight in this case), the topology is reported, as illustrated in Figure 3. Floodlight natively reports latencies between switches which are provided as integer numbers in the figure below.

Figure 3: Latencies Among Service Communication Proxy Platform Components in Milliseconds

For the end-to-end latency analysis conducted further below, it is important to assess how much latency is created by the SDN underlay and how much latency is created by the SCP. In average, the latency numbers do not exceed 3ms and there is a number of observations possible from the figure above, i.e.:

- The OpenStack compute hosts os-edge-* are installed in the same server rack as the SDN hardware switches (pica8-*). The latency between the hardware switches and the SCP VMs OpenStack (*-sp) is always 1ms.
- The os-data-centre-1 OpenStack compute host is located in the lab environment on another floor at InterDigital premises in London, resulting in larger cable lengths and an added latency resulting in 2ms between the SDN switches and the OpenStack compute hosts.
- The latency between OpenStack VMs in os-data-centre-1 are rather high at 3ms caused by OpenStack's virtual networks.

The end-to-end latency analysis is going to assess the connections from any given Service Host (SH) towards the GW. Table 1 provides the resulting latency numbers as a sum of the links between SCP-components, as reported by Floodlight.

Service Host	SCP Topology	E2E Latency
e1-sh	e1-sp > pica8-2 > dc1-sp	3
e2-sh	e2-sp > pica8-3 > pica8-2 > dc1-sp	5
e3-sh	e3-sp > pica8-4 > pica8-2 > dc1-sp	6
fe1-sp-sh	fe1-sp-sh > pica8-3 > pica8-2 > dc1-sp	5

Table 1: Inter-SCP Component Latencies, as Reported by the SDN Controller Floodlight

The end-to-end latency analysis used ICMP Echo Request/Response messages from each Service Host (SH) towards the GW. While SHs are located on the OpenStack compute hosts os-edge-1, os-edge-2, os-edge-2 and the bare metal one far-edge-1 (see Figure 2), the GW was the dc1-gw VM on the OpenStack compute host os-data-centre-1. The results of the ICMP tests are provided in Figure 4 and have the ICMP endpoints and direction as labels of all five tests.

Figure 4: Latency Analysis of the Platform's Service Communication Proxy Across Locations

As can be observed, the baseline measurement between the SCP and the GW (using a standard IP-based virtual network in OpenStack) stays expectedly low and solid at below 1ms. The other measurements that traverse the SCP and the SDN underlay stay close to the latency numbers reported by the SDN controller, allowing to conclude the SCP does not

add more latency to the communication. Having said this, there is occasional outliers in the measurements pointing at an artifact of the implementation of the SCP, i.e. a user space application that performs packet manipulation resulting in the need to configure a generic Linux kernel to permanently allow such activity in user space. It has been observed that by default all user space application (in a generic Linux operating system) are treated as best effort and specific mechanisms are implemented inside the Linux kernel prohibiting user space applications to receive CPU "airtime" whenever they need. The reason for this is to allow a better experience to users when running their programs, as no other application would be allowed to allocate 100% of a CPU. As a result, the SCP components have been configured to be operated in a round robin fashion by the kernel where all SCP user space processes will receive their equal CPU times in a round robin fashion. As logging (journald) was added to this process allowing the SCP to log at info level to catch any unexpected behaviour when testing Enterprise Services, the measured outliers may be a result of that.

Connection	Mean [ms]	Min [ms]	Max [ms]	StdDev [ms]
sp-gw > gw	0.5	0.3	4.9	0.57
e1-sh > gw	6.1	4.3	43.9	5.04
e2-sh > gw	6.9	5.1	9.9	2.23
e3-sh > gw	7.2	4.0	27.2	8.46

Table 2: End-to-End Latency Measurements for the Service Communication Proxy

Next was a throughput analysis using the same links as for the latency measurements. Figure 5 provides the results of the TCP measurements obtained using iperf3. To put the resulting numbers into perspective, the first focus should go the standard IP-based communication between two OpenStack VMs, i.e. sp-gw > gw. Knowing about the physical capabilities of this virtual network (i.e. theoretically the fastest two physical CPU can operate allowing two iperf user space application to exchange TCP-based data), the resulting mean of 475 Mbps seems rather low. This can be explained by the fast that checksum offloading had to be disabled, as the SCP operates in user space and the underlying virtualised NIC would often get the checksum wrong for both UDP and TCP. Turning off checksum offloading essentially tells the Linux kernel to calculate it instead of the NIC doing it. As checksum offloading is a key feature to boost performance of communication of COTS hardware, the effect of turning it off can be observed in the obtained data. Note that the sp-gw > gw throughput numbers do not involve any SCP user space process and is standard iperf on two VMs.

Figure 5: TCP Throughput Analysis of the Platform's Service Communication Proxy Across Locations

The other TCP throughput numbers in Table 3 allow the conclusion that with checksum offloading disabled and 1/3 of the time logging is taking CPU time in the round-robin-based execution of SCP actions, the throughput numbers are reasonably well positioned against the standard IP-based communication between sp-gw > gw. Most notably, the measurements for fe1-sh > gw demonstrates how well the SCP performs compared to standard IP communication, by being 38Mbps short on average. This can be explained by no fully virtualised Linux kernel in place on the fe1-sp-sh SCP component; instead a Linux Container is being used which has direct access to the Linux kernel on bare metal (checksum offloading still disabled). Table 3 provides the detailed numeric numbers to what has been illustrated in Figure 5.

Connection	Mean [Mbps]	Min [Mbps]	Max [Mbps]	StdDev [Mbps]
sp-gw > gw	475	271	573	71.72
e1-sh > gw	190	105	231	27.59
e2-sh > gw	275	52	357	67.00

Sensitivity: Internal

Table 3: End-to-End TCP Throughput Measurements for the Service Communication Proxy

e3-sh > gw	182	83	231	31.78
fe1-sh > gw	437	231	503	61.87

2.2. Validation Results

This section presents a numerical assessment of the Service Function Virtualisation Orchestrator (SFVO). In detail, the time to orchestrate a Service Chain is measured based on the number of Service Functions that form the entire chain. As described in D1.3 [1], the Service Function Virtualisation Orchestrator (SFVO) offers the ability to orchestrate LXC, KVM and Docker containers across a set of Service Hosts (SHs) (aka locations). For the experiments conducted, LXC-based Service Functions were prepared with a Debian 10 base image and the bare minimum of additional packages installed, as per the packaging environment provided to Enterprise Service developers.

The resulting LXC-based SF was then orchestrated into one, two and three Service Hosts and the time was measured to issue the orchestration request up to the point the SFVO reported that the Service Chain had been successfully provisioned. The resource descriptor for this experiment is provided below. The orchestration over n locations was conducted three times each and whiskers boxplot representation of the results was chosen to illustrate the mean, variance and non-existing outliers.

The obtained numbers allow to conclude that the orchestration of a single LXC-based SF into a single Service Host takes 1min:20s, a single SFs into two SHs 1min:48s, and a single SF into three locations 1min:57s. Even though the SFVO orchestrates in parallel across locations, there is some serialised procedures in that implementation, resulting in additional time required if a new SH is added to the resource descriptor.

1 2 3

Figure 6: Orchestration Times over Number of Service Functions (LXC based)

3. 5G Cores

The following subsections describe the validation of the three 5G Cores integrated in the multiple testbeds and trial sites of the FUDGE-5G project.

3.1. ATH

Athonet provides its 5G Core network (5GC) technology for the i) PPDR and ii) Media Showroom use cases of FUDGE-5G. The flavour of the solution deployed in the two use cases slightly differs as follows:

- PPDR use case: full 5GC installed in ruggedized servers for mission critical usage, installed in the project's Network on Wheel (NoW), and especially adapted to on-demand standalone private network deployments in PPDR scenarios.
- Media showroom use case: 5G Control Plane (CP) functionalities deployed in the public cloud (namely, AWS) and integrated with the User Plane Function (UPF) of the consortium partner Cumucore, installed locally at their premises, in a hybrid deployment with UPF at the edge that realistically represents media-related scenarios. More details can be found in D3.2.

Concerning the 5GC deployed for the PPDR use case, Athonet has continuously supported Telenor and the related stakeholders, such as the Norwegian Defence, on enhancing the robustness and the performance of the solutions provided during the project lifetime. The strict requirements of PPDR scenarios imply that not only the 5GC software (SW) is programmed to include self-healing and resilient capabilities, but also the HW hosting the SW needs to be lightweight, robust, and resistant. So, one of the successfully achieved objectives of the work carried out in this context, was to test and evaluate the effectiveness of the ruggedized hardware (HW) selected for this peculiar 5GC instantiation scenario, with direct validation feedback from stakeholders that regularly operate in the PPDR field. Over time, it was decided to bring to this use case more than one 5GC solution, installed over different HW (as described below), but all provided solutions were chosen to meet the robustness and resiliency requirements. The experience that Athonet has gained over the years in the public safety and mission critical arena has definitely been key in deciding what combination of HW and SW to bring to the consortium specifically for this use case.

We can summarize the list of solutions (provided sequentially) and tested on field (also in public events and trials) as follows:

- 1. 5GC installed in a small ruggedized server with 1Gbps interfaces;
- 2. 5GC installed in the Snowcone product by AWS for edge deployments;
- 3. 5GC installed in a 10Gbps-interface ruggedized server.

All the above solutions were installed and integrated in the Network on the Wheel (NoW) and tested successfully by the partner and use case champion, Telenor, and the involved stakeholders (i.e. Norwegian Defence, NATO, AWS, etc.).

A further key validation test for Athonet's 5GC concerned the effective support and execution of mission critical applications over a real-life private 5G network for PPDR use cases. Therefore, Athonet provided to the project a mission critical application (MCX, as defined in the 3GPP standard [2] from one of its third parties to allow the PPDR stakeholders to test on field the set of capabilities that such application can bring to the first responders and special forces, such as instant messaging, man-down, group chat, voice and video calls, image sharing (as can be seen in Figure 7, where video call between a group is in progress). Such 3GPP application requires specific integrations with the 5G core network as per the standards, i.e., via the N5 interface from the Application Function (AF), i.e., the MCX application, to the 5GC's Policy Control Function (PCF), which only few solutions in the market can support nowadays. This capability is crucial and differs from common over-the-top applications, as it allows the end users to have their own traffic prioritized and with guaranteed quality over best-effort traffic in the 5G mobile network. The validation of the policy control operations via Athonet's exposed N5 interface was successful, and it constitutes a relevant step in the path towards the full inclusion of the same feature in Athonet's commercial deployments.

For what concerns the Media Showroom use case, Athonet provided the CP network functions of its 5GC in a cloud instance in the public cloud of AWS and integrated with the UPF provided by Cumucore and installed locally at their premises, at the edge compared to the CP, close to the Radio Access Network (RAN). The integration steps are described in D3.2 [3].

Figure 7: Group call via NEMERGENT PTT app

D4.2 Final Technical Validation of 5G Components with Vertical Trials

3.2. CMC

5G Core has a user management service where allowed users of the network are defined. User definition has also information about services users are allowed to use. For example, access to the network slices is predefined. This communication happens over N1 interface as shown in diagram below.

Figure 8 Cumucore architecture

During the attachment process 5G Core will ensure that the user has been granted an access right to use the network. In the end of the attachment process active data flow between User through Network to Internet is established using Interfaces N3 and N9

Interface N2 is used for signalling between User, Radio Access Network and Core Network during the active data flow. User Equipment delivers for example measurement results over N2 interface to AMF and receives for example radio channel power settings over this interface.

Mobile core network is organized into two network slices in the other words two separate virtual networks. One network slice is used for communication between UE and Internet and the second slice is for audio traffic between UE and Local audio processing server. Mobile Network core slices have different capacity and latency capabilities. Network slice has its own UPF and can also have other own network functions if needed. Inside the network slice there are user profiles that can be network slice specific. User profiles are defined under Mobile Network Core. User profiles are attached to data flows to differentiate Quality of Service levels. User profile includes:

- Connection type: Guaranteed bit rate / Nonguaranteed bitrate
- Max capacity downlink / uplink
- Pre-emption capability & vulnerability
- Quality of Service class
- Traffic Priority classifier

Network Slicing Manager is responsible for creating data flows per request. Network Slice Manager ensures that network slices can meet the promised KPI for all active and reserved upcoming data flows. Specific data flows can be requested outside of the network. In this use case specific data flows are for microphones and in-ear monitors. There is an open API to receive data flow requests. Data flow request includes flowing parameters:

- Source and destination IP address
- Requested profile
- Downlink and Uplink bitrate
- Time that data flow is requested (start & end time)

Network Slicing Manager has information of all active data flows, how much resources they are consuming and the cell they are in. Network Slicing manager has information about users' real time radio environment and location through NEF function. Based on this information Network Slicing manager will decide if requested data flow can be served by the network slice without causing any KPI violation to existing or upcoming reserved data flows.

New data flow requests will be sent over NG5 interface to PCF that will set up a data flow and send requests to Radio network over N2 interface. After all settings in the Radio and Core networks are done, the user is informed over the N1 interface to start using new data flow for a specific application. Audio processing will happen locally next to the 5G Core. The interface between Network Core and Audio processing computer is N6.

Network slicing manager has an user interface where the operator can see every application's resource utilization level. This information can be used to improve overall efficiency of the network.

During FUDGE project Cumucore core has been added 5GLAN functionality with TSN features in Industry4.0 use case. Cumucore has also added cell broadcast capability as demonstrated in in the public safety use case.

3.3. FHG

Fraunhofer FOKUS Open5GCore testbed is used for deploying private networks in two use cases within FUDGE- Hospital use case and Interconnected NPNs use case. In the Hospital use case the 5G core is responsible to forward the monitored data to vertical application whereas in Interconnected NPNs, the roaming UEs need to be authenticated and provided with both local and home network services by the 5G core network. Depending on the requirements, 5G core components were selected and deployed for these two use cases.

In the Hospital use case, the 5G Core was deployed on bare metal HPE DL110 telco server. Here all the 5G core components were deployed on the host machine without using network namespaces or any virtualization technique to achieve higher performance. The high level 5G core architecture is illustrated here using Figure 9. The AMF and UPF both are attaching directly to eth0 interface to receive N2 and N3 connection from RAN (NOKIA in this case). The OneSource Mobi-trust vertical application was also hosted in the same server and the data traffic is routed via the N6 interface to the application.

To validate the use case, from the 5G core it was checked if the registered active devices have successfully established data bearers or not. Tests were performed to validate the throughput of the data path. During the trial, while sending data to the application bandwidth was monitored and captured from the core network, which will be reported in D4.3 [4].

Figure 9: 5G Core deployed for 5G Virtual Office use case

In the Interconnected NPNs use case, the main requirement is to showcase roaming between private networks as mentioned earlier in this section. To illustrate that, 5G small-scale private networks were deployed in three geographically distant locations Berlin, Valencia and Oslo with 5G core components along with a newly developed component for this use case SBC (in more detail in section 5.7). The high-level architecture is shown in Figure 10. In each of the locations a lightweight containerized deployment was followed to run the 5G core components. The 5G core running in the three locations were configure with different PLMNs. Wireguard was used to interconnect the three nodes in order to have secure control plane message exchange between the domains and to forward the data traffic securely.

To validate the features of the use case, emulated UEs and Benchmarking Tool within the Open5GCore platform were used. They were configured with different PLMNs to test the home and visited subscriber scenarios. Different 5G procedures like registration, PDU session creation and deregistration were initiated for both home and visited subscribers. The duration of the procedures was collected and compared to check the overhead introduced in roaming. Also, the overhead of message exchange through SBC was captured. The data path capacity was also tested in cases, where data traffic is offloaded via local data network to the data network (local breakout) and where data traffic is offloaded via the home network to the data network (home-routed). All these captured values and their explanations will be reported in deliverable D4.3 [4].

Figure 10: 5G Core deployed at three locations (Berlin, Valencia, Oslo) and interconnected for Interconnected NPNs use case

During the tenure of FUDGE-5G project as part of the use case Interconnected NPNs the Open5GCore testbed has been extended with new features. A new component SBC with the functionalities of SCP and SEPP, has been developed and integrated with the FOKUS 5G core for routing secured messages between private networks. Home-routed roaming feature (following 3GPP specification [5]) was also added in the 5G core to provide the roaming users access to their home services.

3.4. Microservices/NFs

One of the innovative frameworks proposed by FUDGE-5G is that 5G Core Networks (5GCs) can be orchestrated as cloud-native services. To enable this, 5GC Network Functions (NFs) need to be programmed as modular flexible and scalable pieces of software that fit within cloud-native architectures. In this perspective, FUDGE-5G's Task 2.4, "Disintegration of Network Functions as Microservices," was devoted to the study of how such functions can be efficiently decomposed into *microservices*, which by definition makes them suitable for cloud-native environments and "orchestrable" within end-to-end Enterprise Services, according to the terminology defined by the project (cf. D1.2 [6], D2.1 [7]). The technical work of T2.4 is reported in D2.4 [8]. In particular, in Section 3.2.4 therein, we analysed a possible decomposition into microservices of the following heterogenous set of 5GC NFs:

- Unified Data Management (UDM),
- Authentication Server Function (AUSF),

- User Plane Function (UPF),
- Policy Control Function (PCF),
- Session Management Functions (SMF),
- Network Exposure Function (NEF),
- Cell Broadcast Centre Function (CBCF).

Such NFs were chosen for their specific role within the 5GC and their relevance as enablers of advanced 5G functionalities. Such work does not contradict the architectural specifications of the 5GC [9] at an inter-NF level but goes beyond the state of the art in the internal design of the NFs, fostering the adoption of microservices in their development. In particular, in D2.4 [8] we advocated the need for a non-trivial redesign of the 5GC into a microservice-based architecture to address the fact that it is not possible to program the existing standardized 5GC NFs as collections of independent microservices by simply mapping each of the distinct standardized services offered by the NFs with a single corresponding microservice.

D2.4 [8] already contained some validation analyses, derived after the actual development in real proofs of concept of FUDGE-5G's re-designed NFs. In the following, we report further complementary results and considerations on NEF, CBCF, AUSF, and PCF, obtained within the activities of WP3 and of the final months of WP2, after the submission of D2.4 [8].

3.4.1. NEF

The validation tests of NEF can be split into two main objectives. First, the goal of ensuring a 3GPP compliant implementation and integration of NEF with the remaining NFs of the 5GC. Second, to showcase some of the advantages of the microservice based architecture by means of analytical results.

In D3.2 [3], results of the integration tests with the Fraunhofer FOKUS 5G Core were described. With those results, it was possible to confirm a successful implementation and integration with 5GC. Further traces and logs can be found in the Annex A.

Regarding the validation of the microservice based architecture, it consisted of stress tests by sending multiple requests for QoS policy changes (for PCF, through NEF) with two different setups. In the first setup, detailed in Table 4, all the microservices were deployed on the same machine, while the AF sending the requests and the PCF were in different machines.

VNF	Components	Resources
NEF	Gateway Service Npcf Service + Database	2 vCPU @ 2 GHz 2GB of RAM

PCF	PCF Service	2 vCPU @ 2 GHz 2GB of RAM
AF	100 processes	2 vCPU @ 2 GHz 2GB of RAM

The second setup used the same components, but now with NEF's microservices split into different machines (1:1 mapping). Table 5 further details that setup.

Table	5:	NEF	test	setup	2	details
-------	----	-----	------	-------	---	---------

VNF	Components	Resources
	Gateway Service	2 vCPU @ 2 GHz 2GB of RAM
INEF	Npcf Service + Database	2 vCPU @ 2 GHz 2GB of RAM
PCF	PCF Service	2 vCPU @ 2 GHz 2GB of RAM
AF	100 processes	2 vCPU @ 2 GHz 2GB of RAM

Figure 11 describes the base setup, giving further context on the composition of the NEF and communication between the multiple components involved.

Figure 11: NEF base test setup

To obtain results from the setups, multiple test runs were executed. Each test run executed for five minutes, with every 100 instances of the AF sending one request per second. For each run, the response time for each request, and the current CPU and RAM of the machines was registered. In Table 6, one can observe the results from tests using both the setups.

Table 6: Microservice NEF tests results

Measurement	Setup 1	Setup 2
Total requests	11695	16005
Complete requests	11695	16003
Average CPU usage	99%	82%
Average RAM usage	50%	38%
Average requests per second	38	53

Comparing the results, it is verifiable a noticeable improvement in the number of requests processed with the disintegrated NEF setup. This improvement can be attributed to the fact that less processing power is required from each machine, allowing for more requests to be processed. In the first setup, the CPU of the NEF machine was at maximum usage, where in the second setup, there was still a substantial amount of CPU usage available. This supports one of the key advantages of a decomposed microservice architecture, where the usage of stateless micro services enabled easy scalability and recovery in case of failures.

Even though the objective of the tests was accomplished, it is noticeable a big decrease of performance in terms of requests processed in a second when comparing with results reported in D2.4 [8]. However, those early tests were performed using an older version of NEF with a much simpler code base (older 3GPP standard) and still using HTTP 1.1 as the base protocol. Our findings demonstrated that HTTP 2.0 is heavier and brings some decreases in overall performance. To further confirm that fact, further test runs were performed using the same HTTP 1.1 libraries from the D2.4 [8] tests. Table 7, shows the results with that change using the same setup described in Table 4 (setup 1).

Measurement	Result
Complete requests	24254
Average CPU usage	95%
Average RAM usage	50%
Average requests per second	81

Table 7: Microservice	NEF tes	t results	(HTTP	1.1	only)
-----------------------	---------	-----------	-------	-----	-------

3.4.2. CBCF

For the integration testing the CBCF was deployed on the same AWS node as Cumucore's AMF. The CBCF only uses the services of the AMF in this 5Gcore network.

TCP traces were made to measure the time it takes from posting the message to the REST microservice and output ADAPTER 5G accomplishing the WRITE operation to the AMF. See Figure 11. The write/replace message contained only a single cell, which would be consistent with the deployment in the NOW. The processing time in the microservices-based CBCF is 250-260 ms.

The traces are taken in the REST container and in the ADAPTER 5G container. Because they run on the same host the clock is synchronized – it is the same clock. The traces show (see Figure 12):

- 1. from 172.30.0.1 (host) to 172.30.0.7 (rest) ingest port 7000 message post
- 2. from 172.30.0.9 (adapter5g) to 172.30.2.1 (AMF) port 4002 write/replace

Figure 12: CBCF representation

The O2M monolithic CBC is about 10 times faster. An initial analysis shows that the use of Kafka could be the reason for the high latency. Further analyses will be performed to verify this.

Lab tests were also performed in Cumucore's lab. See section 3.2.

Figure 13: Traces from CBCF alert message delivery

3.4.3. AUSF

The AUSF was breakdown for different services and was deployed as different instances using Kubernetes containers. Each of the AUSF instances registers with its services to NRF and the consumer selects the instance depending on the service needs. As shown in Figure 13, two instances of AUSF is registered and AUSF instance serving 'nausf-auth' service takes part in the authorization process. So, AMF as a consumer sends authentication request to the first AUSF here from the image. Multiple AUSF can also be serving the same services resulting into load balancing in the system.

		[NRF	State HT					
Numbe	er of e	ntrie	s: 5 emp	ty slots: 27 ou	t of 32			
Hash	1, ent	ries:						
	·		Network	Functions List				
	NF TYPE: AUSF							
	NF	ID:		e501fa69-b31a-	501fa69-b31a-47a4-ae32-7ae96a0cd1d1			
	NF	Stat	e:	REGISTERED				
	NF	IP:		192.168.11.25:	8080			
NF S	Service	List						
			NF Serv	ice Name:		nausf-auth		
			NF Serv	ice ID:	d92ef7c8	8-fa5b-452d-b447-135ab344246e	•	
			NF Serv	ice Status:		REGISTERED		
Hash	11,		entries:					
			Network	Functions List				
	NF	ТҮРЕ		AUSF				
	NF	ID:		f4865b05-214a-	4a38-a507·	-86d148aa6bdd		
	NF	Stat	e:	REGISTERED				
	NF	IP:		192.168.11.26:	8080			
NF S	Service	e List						
			NF Serv	ice Name:		nausf-upuprotection		
			NF Serv	ice ID:	7d059e98	8-30f4-4a17-9b76-d7b285e79b74	ļ.	
			NF Serv	ice Status:		REGISTERED		

Figure 14: List of AUSFs registered at NRF

4. 5G Devices

This section presents the results that served us to validate the 5G devices (5G modem) developed by Fivecomm in the context of FUDGE-5G. Such devices were specifically designed to satisfy the needs envisaged at the beginning of the project for the use case demonstration of the **Industry 4.0 vertical**. However, such devices have been used in other demonstrations and tests during the project, e.g. they have been used in London to validate the IDE platform, among others.

Since such prototypes were developed for the Industry 4.0, it is in such test-bed were they were also validated. The validation has been based on three main 5G network-related KPIs:

- i. 5G RTT latency (between two 5G devices).
- ii. One-way latency (5G device to 5G core).
- iii. Throughput
- iv. Radio signal quality

As mentioned, the 5G modem is a hardware-based device that provides sub-6 GHz connectivity. Frequency bands such as n77 and n78, used in the ABB lab are supported (among many others). The 5G modem also supports both non-standalone (NSA) and standalone (SA) configurations, although just the last one was used in the trial. The following picture shows the final form factor of the 5G devices employed at the end of the project.

Figure 15: 5G modem developed by Fivecomm and validated in ABB lab, as part of UC4 final trials.

During the last stage of the project, up to three modems were used in different locations.

- *Modem A*: available and validated in ABB premises for UC4 trials.
- **Modem B**: available and validated in IDE lab first, shipped to ABB premises as a second modem for the UC4 trials.
- **Modem C**: available and validated in Cumucore lab. Its software was modified to include all needed features for TSN support.

The Industry 4.0 validation has been performed in two different tracks: ABB (end-to-end trial of test cases with 5GLAN) and Cumucore (TSN setup). The modem in Cumucore was already validated during the first half of the project and reported in D4.1 [10].

Regarding the ABB setup, a first validation was made at Telenor premises by using the network architecture explained in D3.2 [3]. Once the integration was fully completed, the following results were obtained.

root@Open	Wrt: ~	
l	registration:	roaming
3GPP EPS 	initial bearer apn: initial bearer ip type:	internet ipv4
SIM	primary sim path: sim slot paths:	/org/freedesktop/ModemManager1/SIM/0 slot 1: /org/freedesktop/ModemManager1/SIM/0 (active) slot 2: none
Bearer root@OpenWrt PING 1.1.1.1 64 bytes fro 64 bytes fro 70 1.1.1.1	paths: :># ping 1.1.1.1 (1.1.1.1): 56 data bytes m 1.1.1: seq=0 ttl=53 t: m 1.1.1: seq=1 ttl=53 t: m 1.1.1: seq=2 ttl=53 t: m 1.1.1: seq=3 ttl=53 t: m 1.1.1: seq=4 ttl=53 t: m 1.1.1: seq=6 ttl=53 t: m 1.1.1: seq=6 ttl=53 t: m 1.1.1: seq=9 ttl=53 t: m 1.1.1: seq=1 ttl=53 : m 1.1.1: seq=2 ttl=53 : m 1.1.1: seq=1 ttl=53 : m 1.1.1: seq=2 ttl=53 : m 1.1.1: seq=2 ttl=53 : m 1.1.1: seq=1 ttl=53 : m 1.1.1: seq=1 ttl=53 : m 1.1.1: seq=2 ttl=53 : m 1.1.1: seq=3 : m 1.1: seq=3 : m 1.1: seq=4 : m 1.1: seq=5 : m 1.1: seq=6 : m 1.1: seq seq=6 : m	/org/freedesktop/ModemManager1/Bearer/0 ime=282.653 ms ime=85.965 ms ime=68.762 ms ime=43.486 ms ime=43.683 ms ime=55.443 ms ime=73.237 ms ime=73.237 ms ime=60.967 ms ime=87.258 ms time=81.957 ms time=87.007 ms ceived, 0% packet loss 1/282.653 ms

Figure 16: 5G RTT latency results (ping) at Telenor premises before moving to ABB.

🔤 root@OpenWrt: ~
BusyBox v1.33.1 (2021-10-24 09:01:35 UTC) built-in shell (ash)
OpenWrt 21.02.1, r16325-88151b8303
root@OpenWrt:~# iperf3 -c 192.168.19.111 iperf3: error - unable to connect to server: Connection refused root@OpenWrt:~# iperf3 -c 192.168.19.111 -p 60000 Connecting to host 192.168.19.111, port 60000 [5] local 10 200 1 8 port 40086 connected to 192 168 10 111 port 60000
[To] Interval Transfer Bitrate Betr Ound
[5] A AA-1 AA ser 7 11 MRytes 59 7 Mhits/ser A 346 KRytes
[5] 1.00-2.00 ser 5.04 MBytes 49.8 Mbits/cer 0 346 KBytes
[5] 2.00-3.00 ser 5.82 MBytes 49.3 Mbits/ser 0 346 KBytes
[5] 3.00-4.00 sec 5.88 MRvtes 49.3 Mbits/sec 0 346 KBvtes
5 1 4.00-5.00 sec 5.88 MBytes 49.3 Mbits/sec 0 346 KBytes
5 5.00-6.00 sec 5.88 MBytes 49.3 Mbits/sec 0 346 KBytes
5] 6.00-7.00 sec 6.61 MBvtes 55.5 Mbits/sec 0 346 KBvtes
5] 7.00-8.00 sec 5.88 MBytes 49.3 Mbits/sec 0 346 KBytes
5] 8.00-9.00 sec 6.00 MBytes 50.3 Mbits/sec 0 346 KBytes
[5] 9.00-10.00 sec 5.88 MBytes 49.3 Mbits/sec 0 346 KBytes
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.00 sec 60.9 MBytes 51.1 Mbits/sec 0 sender
[5] 0.00-10.00 sec 59.1 MBytes 49.6 Mbits/sec receiver
iperf Done.

Figure 17: 5G throughput (limited by the UL) results (iperf) at Telenor premises before moving to ABB.

Once the devices and the 5G network were validated, the next step was to move the equipment from Telenor to ABB premises and validate again by following the same procedure. The final network diagram is shown in Figure 17, for the particular measurement of 5G latency between a device and the 5GC. Note that a similar configuration was used for other KPIs, where two modems were used.

Figure 18: 5G network architecture. Case for 5G latency from the device to the 5GC.

In the following lines, we show the most relevant results obtained for validating the devices (and the 5G network) in ABB.

A. 5G RTT latency

Up to 4 tests were performed, whose results are the following.

As it can be observed, similar results to those shown in Figure 15 (Telenor premises) were obtained. The values obtained, for instance, for the last test, were:

- Minimum: 12.305 ms
- Maximum: 68.56 ms
- Average: 40.30 ms
- B. One-way latency (device-5GC)

Two different tests were performed. The first test provided the following latency values.

Figure 20. 5G one-way latency results (test 1).

The second test provided slightly better results, with the following values:

- Minimum: 9.347 ms
- Maximum: 54.128 ms
- Average: 17.78 ms
- C. 5G throughput

Throughput was measured by using both UDP and TCP transmissions. The following results were obtained.

Table 8: 5G Throughput

Throughput					
	Downlink	Sender	399Mbits/s		
ТСР		Receiver	395Mbits/s		
	Uplink	Sender	50.2Mbits/s		
		Receive	42.9Mbits/s		
UDP	Downlink	950Mbits/s			
	Uplink	43.8Mbits/s			

D. Radio signal quality

In this final test, RSRP, RSRQ and SINR results were obtained. Note that the 5G radio dot and the device were in a static position. The average values obtained were -72 dBm, -11 dB and 27 dB respectively.

5. Innovations

During the project, multiple technologies and innovations have been developed to complement and fulfil the objectives of the various use cases. This section details the validation efforts carried out for six of these innovations.

5.1. VAO

Vertical Application Orchestrator is a piece of the Fudge-5G Platform which its purpose is to provide an interfacing layer to the end user (i.e., the vertical service expert and the application developer) for managing the deployable applications and their features, without interfering with the network level functions and processes managed by the involved telecom operators and infrastructure owners. Thus, it decouples the application layer management procedures from the network layer management, providing application awareness to the network orchestration entity and specifically to the SFVO through(N6) as shown in Figure 2.

The VAO Administrative domain consists of all modules that are responsible for registering a vertical service and all its components, providing cloud-related and network-related metadata, authoring deployment and runtime management of the operational state of the vertical service per se.

Vertical Application Orchestrator has been successfully deployed and integrated over London's Testbed as already stated in Deliverable 3.2 [3]. The deployed version of the VAO is comprised by 14 micro services and is depicted in Figure 20.

Figure 21: VAO Deployment over IDE's Testbed.

5.1.1. Technical Testing of the VAO

In this section, the technical evaluation results for the software mechanisms and the integration with the platform are provided.

5.1.1.1. Mechanism Testing - Unit testing

The main objective of this sub-section is to provide information about the unit tests applied during the deployment of the VAO. Unit tests are used for testing the functional mechanisms of a piece of software. In this particular case, unit tests are used to guarantee

the quality of the mechanisms deployed as well as to validate the integration with the other parts of FUDGE-5G Platform.

Just to clarify that a unit test is applied to a piece of code without any dependencies on other code parts. Therefore, each microservice and each mechanism has been tested with unit test before integrating with the other pieces of the Platform.

A simplified list of unit tests can be seen in table below:

Table 9: Unit Tests Performed to validate the deployment.

Description	Decult Status
Description	Result Status
Create a new Component Descriptor (serialized format)	Passed
Fetch Component Descriptor	Passed
Update Component Descriptor	Passed
Delete Component Descriptor	Passed
Create Application Graph	Passed
Fetch Application Graph	Passed
Update Application Graph	Passed
Delete Application Graph	Passed
Create Application Graph Instance	Passed
Fetch Application Graph Instance	Passed
Delete Application Graph Instance	Passed
Execute Deployment	Passed
Update Slice Intent	Passed
Un-deploy Application Graph Instance	Passed

D4.2 Final Technical Validation of 5G Components with Vertical Trials

Deploy Application Graph Instance

The unit testing is being conducted on the API exposed and has been thoroughly described in Deliverable 2.1 [7].

Two indicative unit tests can be found in the Annex B.

5.1.1.2. Integration Testing

This section presents the tests that are covering integration of multiple mechanisms of the VAO (internal integration test) and mechanisms of the VAO with other systems or mechanisms of the FUDGE-5G Platform. Integration testing identifies problems that occur when units are combined and is considered as an extension of unit testing, that tests interfaces and interactions between the components.

The main idea of integration testing is to start from two or more units that have already been tested and test the integration between them. In most cases methods from different mechanisms are combined in order to achieve the needed functionality, so testing requires combination of pieces of software that create a basic integrated functionality.

Next, we have defined and conducted the next integration actions:

- i. Onboard one vertical service
- ii. Make a deployment of a vertical service through VAO
- iii. Test the connectivity between the service graph components during runtime
- iv. Test the connectivity with the 5G-Core

The results are summarised in the table below:

Table 10: Integration Tests performed.

Description	Result Status	
Onboard one vertical service	Passed	Successful Onboarding of the OneSource's vertical service.
Make a deployment of a vertical service through VAO	Passed	Successful Deployment of OneSource's Vertical service on London Testbed (see Figure 21, Figure 22)
Test the connectivity between the service graph components during runtime	Passed	Successful Connection between two Vertical components (see Figure 23)

Test the connectivity with the Passed 5G-Core

<pre>ubuntu@maestrok8s-master:-\$ kubectl get all -n mbtrst-billy-eb NAME pod/billy-mobitrust-device324-dmh12e6tej-deployment-59b8669678 pod/billy-mobitrust-gateway263-gkwi28p8wt-deployment-59b79b976 pod/billy-mobitrust-message-broker252-2ezepb9wd2-deployment-547c pod/billy-mobitrust-orchestrator286-xveeqrdhkr-deployment-57fc pod/billy-mobitrust-portal275-kfut3891g-deployment-78b5799966 pod/billy-mobitrust-postgresql241-6v05frx37g-deployment-76f85d</pre>	hqrr7a4q REAU jkcxw 1/1 jqn6c 1/1 6ffcc 1/1 7wn6g 1/1 c48tb 1/1 2zdpw 1/1	DY STATUS Runnir Runnir Runnir Runnir Runnir Runnir	6 REST. 19 0 19 0 19 0 19 0 19 0 19 0 19 0	ARTS AGE 20d 20d 20d 20d 20d 20d 20d			
NAME service/billy-mobitrust-device324-dmh12e6tej-service service/billy-mobitrust-gateway263-gkwi28p8wt-service service/billy-mobitrust-nessage-broker252-2e2epb9wd2-service service/billy-mobitrust-orchestrator286-xveeqrdhkr-service service/billy-mobitrust-port275-kfut3891q-service service/billy-mobitrust-postgresql241-6v05frx37g-service	TYPE ClusterIP NodePort NodePort NodePort NodePort NodePort	CLUSTER-1 10.103.92 10.106.39 10.100.16 10.109.55 10.101.11 10.96.149	P 2.197 5.14 59.129 5.57 1.86 5.110	EXTERNAL - IP <none> <none> <none> <none> <none> <none> <none></none></none></none></none></none></none></none>	PORT(S 1111/T 443:32 8084:30 1312:30 8080:30 5432:30) CP 391/TCP 3775/TCP,8883:32711/TCP 3348/TCP 3123/TCP 3256/TCP	AGE 20d 20d 20d 20d 20d 20d
NAME deployment.apps/billy-mobitrust-device324-dmh12e6tej-deploymen deployment.apps/billy-mobitrust-gateway263-gkw128p8wt-deployme deployment.apps/billy-mobitrust-message-broker252-2ezepb9wd2-d deployment.apps/billy-mobitrust-orchestrator286-xveeqrdhkr-dep deployment.apps/billy-mobitrust-portal275-kfut389tyla-deploymen deployment.apps/billy-mobitrust-postgresql241-6v05frx37g-deplo	t nt eployment loyment t yment	READY UF 1/1 1 1/1 1 1/1 1 1/1 1 1/1 1 1/1 1 1/1 1 1/1 1 1/1 1 1/1 1	-TO-DATE	AVAILABLE 1 1 1 1 1 1	AGE 20d 20d 20d 20d 20d 20d		
NAME replicaset.apps/billy-mobitrust-device324-dmh12e6tej-deploymen replicaset.apps/billy-mobitrust-device324-dmh12e6tej-deploymen replicaset.apps/billy-mobitrust-gateway263-gkw128p8wt-deployme replicaset.apps/billy-mobitrust-gateway263-gkw128p8wt-deployme replicaset.apps/billy-mobitrust-message-broker252-2ezepb9wd2-d replicaset.apps/billy-mobitrust-orchestrator286-xweegrdhkr-dep replicaset.apps/billy-mobitrust-orchestrator286-xweegrdhkr-dep replicaset.apps/billy-mobitrust-orchestrator286-xweegrdhkr-dep replicaset.apps/billy-mobitrust-portal275-kfut389y1a-deploymen replicaset.apps/billy-mobitrust-portal275-kfut389y1a-deploymen replicaset.apps/billy-mobitrust-portal275-kfut389y1a-deploymen replicaset.apps/billy-mobitrust-portal275-kfut389y1a-deploymen	t-59b8669674 t-7dccb8c654 nt-59779b974 nt-fc7d5774 eployment-82 loyment-57f4 loyment-8577 loyment-8577 t-7b85779964 t-d97db4bb6 yment-76f850	3 55 7 7 20076b77c 99d89c96 5fdfc4c 55d8b8c 1 1 1f8c5	DESIRED 1 0 1 0 1 0 1 0 1 0 1	CURRENT 1 0 1 0 1 0 1 0 1 0 1	READY 1 0 1 0 1 0 1 0 1 0 1	AGE 20d 20d 20d 20d 20d 20d 20d 20d 20d 20d	

Figure 22: Deployment of Onesources's Vertical service on London Testbed

Figure 23: Deployment of Onesources's Vertical service on London Testbed

NAME	TYPE	CLUSTER-IP	EXTERNAL-IP	PORT(S)
HGE service/bill-mobitrust-device324-fzszurphz8-service	ClusterIP	10.104.230.250	<none></none>	1111/TCP
760 service/bill-mobitrust-gateway263-d4dc4hx638-service	NodePort	10.101.168.230	<none></none>	443:30467/TCP
760 service/bill-mobitrust-message-broker252-yus2ubpgz4-service	NodePort	10.98.122.89	<none></none>	8084:32442/TCP,8883:30120/TCP
/bd service/bill-mobitrust-orchestrator286-r8wa7e1q85-service	NodePort	10.110.229.64	<none></none>	1312:31902/TCP
760 service/bill-mobitrust-portal275-gqpsysp1va-service	NodePort	10.106.35.41	<none></none>	8080:30033/TCP
700 service/bill-mobitrust-postgresql241-82vyav1prb-service 76d	NodePort	10.111.7.107	<none></none>	5432:31137/TCP
NAME	ТҮРЕ	CLUSTER-IP	EXTERNAL-IP	PORT(S)
ны: service/bill-mobitrust-device324-fzszurphz8-service 764	ClusterIP	10.104.230.250	<none></none>	1111/TCP
service/bill-mobitrust-gateway263-d4dc4hx638-service	NodePort	10.101.168.230	<none></none>	443:30467/TCP
service/bill-mobitrust-message-broker252-yus2ubpgz4-service	NodePort	10.98.122.89	<none></none>	8084:32442/TCP,8883:30120/TCP
rou service/bill-mobitrust-orchestrator286-r8wa7e1q85-service	NodePort	10.110.229.64	<none></none>	1312:31902/TCP
rou service/bill-mobitrust-portal275-gqpsysp1va-service 764	NodePort	10.106.35.41	<none></none>	8080:30033/TCP
rou service/bill-mobitrust-postgresql241-82vyav1prb-service 76d	NodePort	10.111.7.107	<none></none>	5432:31137/TCP
thanos@thanos-Dell-G15-5511:-\$ telnet 212.101.173.132 30033 Trying 212.101.173.132 Connected to 212.101.173.132. Escape character is \01'	th Co	anos@thanos-Dell- nnection to 212.1	G15-5511:~ \$ nc 01.173.132 324	-vz 212.101.173.132 32442 42 port [tcp/*] succeeded!

Figure 24:Successful Connection on two deployed Vertical components

5.2. Thales Slice Orchestrator

Within NEXIUM Defence Cloud suite, Thales's Orchestrator provides mission-oriented interfaces to easily deploy and manage end-to-end services in ICT architecture. Orchestration capabilities overcome infrastructure complexity by enabling automated processes.

In order to manage cloud and programmable networks, the Orchestrator gives ICT operators the capability to deploy end-to-end services.

Thales's Military Operations Orchestrator manages at the same time application deployment, IT resources and network while remaining compliant with safety and security rules.

Thales Nexium Orchestration Suite can achieve:

- Rapid deployment following the mission tempo
- Controlled deployment capability to ensure alignment with security policies as imposed by critical systems
- Reconfiguration even in hostile environments with low or no connectivity
- System management taking into account the rare access to available resources and the constrained networks
- Deployment of any kind of applications (legacy, cloud-native...) in order to ensure a smooth transition to new IT infrastructures.

This solution is modular and can be used at the national infrastructure, HQ level or on the battlefield or dedicated to specific submodule of functionality.

For Fudge program and deployment constraint a submodule (Thales Slice Orchestrator) provide the capability to manage quality of service (QoS) rules based on slice management

and Amarisoft network EPC constraint (EPC that has been agreed at beginning of the project), thus allowing an UE to be isolated from other UEs in its slice.

Set of capabilities has been delivered to the team allowing the management of the QoS rules. The QoS rules consist in a set of different values: the UE on which the rule is applied, the wanted 5G QoS Identifier (5QI), the allocated download and upload bitrates and the port range/type of service (ToS).

Possibility to provide manual or automatized mechanism to handle QoS Slice management orchestration.

The following figure provides the web interface of Slicing Orchestration tool.

Figure 25: Slicing Orchestrator scenario

The refreshing time at which the data is monitored can be adjusted and is set every second by default. When an anomaly is detected, the rule is activated about one second after. The effect on the connection is visible in less than 5 seconds.

For the test scenario, shown in Figure 25, two UEs are connected to the core with a video stream between them. A large data stream, like a file transfer or an iperf test, is sent from one of the UEs to the base station. The video will be disrupted, and the script will detect the anomaly. A QoS is then applied, and the video will be fluid again.

Figure 26: Scenario setup

5.3. 5GLAN

5GLAN feature was developed in Cumucore premises and tested together with 5Comm modem. After successful integration 5GLAN set up was sent to be used in Industry4.0 use case trial. 5GLAN was tested successfully using test set-up shown in diagram below.

Figure 27 Industry 4.0 test set-up

Metric	Result
Downlink speed	166Mbps
Uplink Speed	115Mbps
Ping from UE to laptop	1608/1593 0% loss ~322 seconds min/avg/max/mdev 5.0/10.7/81.7/3.7 ms

Test set-up was successfully using Profinet protocol to collect data from sensors and cameras to the automation hub and to connect motor controls using 5G air interface.

5.4. TSN

Cumucore (CMC) has been focusing on the design of 5G core specifically for Non Public Networks (NPN) primarily industrial networks that require deterministic communications following TSN features. Therefore, CMC 5G core includes the latest 3GPP standard

In test we received following results:

specifications including all the necessary network functions (NF) for connecting UE devices to fixed LAN and become native TSN devices.

UE is defined to have attached functions of time stamping in data frames, using the device side of the TSN translator (DS-TT). On this Network Function, a step of time synchronisation is implemented using the TSi from the Suffix field of the gPTP messages (Sync or Follow Up messages), as it has been defined by 3GPP [11]. In order to achieve this function a 5G-Modem is integrated in a NPN following an inherent structure based on a 5G component, a TSN packet handler and wired network components. These last two components may be integrated in the same hardware such as a microprocessor but following the TSN standards defined on IEEE 802.1 Qbv [12], 802.1 CB [13], 802.1 As [14] and 802.1 Qbu [15].

In order to demonstrate the TSN functionality CMC has deployed the 5G core in ABB living labs following the topology below. In this setup we demonstrate successful time synchronization of TSN devices connected to UE device with fixed TSN devices connected to LAN.

Figure 28: TSN network deployed at ABB living labs for time synchronization testing

After running the time synchronization process to get the UE in sync with the fixed devices following results were obtained.

Location	Results
UE Local Time	1677594032.510012643

Grand Master Time	1677594032.495004032
Offset	-15008611

Table 13: Time synchronization in fixed TSN device

Location	Results
UE Local Time	1677594273.198258969
Grand Master Time	1677594273.198259137
Offset	168

The system was installed in ABB living labs as shown in the following figure for additional measurements.

Figure 29: Equipment deployed at ABB living labs for time synchronization testing

The testing of TSN network was conducted both in CMC laboratory and in ABB living lab premises. The setup uses unique system that provides Ethernet PDU connection over 5G network. The commercial 5G networks only support IP PDU sessions for data exchange

D4.2 Final Technical Validation of 5G Components with Vertical Trials

between mobile devices and data networks such as public Internet. Instead, Non-Public Networks (NPN) for industry requires Ethernet PDU together with 5GLAN functionality. This setup includes the support for Ethernet PDU which is uniquely available currently in CMC 5G Core. The Ethernet PDU allows to transfer gPTP messages from Grand Master (GM) located in fixed LAN to the 5G modem which will send the gPTP messages to DS-TT for synchronizing the moving devices.

The preliminary results are shown in Table 12 and Table 13 where the mobile TSN device is synchronized but with different offset compared to the synchronization achieved by the fixed TSN device connected directly to the GM in the fixed LAN. The deployment in ABB labs had few limitations that were blocking the gPTP messages to reach the mobile TSN device. The end result is that gPTP was running over the 5G network using the Ethernet PDU, but the base station disconnected the mobile and synchronization was lost.

This behavior of the base station caused that gPTP messages did not reach the mobile TSN and went out of synch. Therefore, for providing reliable time synchronization the Ethernet PDU session should be supported, not only in the 5G Core, but also in the base station and 5G routers. Moreover, the jitter of the delay in the 5G radio link needs to be minimized to ensure the offset of the clocks in both mobile and fixed TSN are aligned.

Thus, initial results show the gPTP can be transferred over the 5G radio to certain degree of accuracy to synchronize mobile devices but still requires improvements to support natively Ethernet PDU and low delay jitter for reaching high levels of synchronization accuracy.

5.5. SBC

Session Border Controller (SBC) was developed in FUDGE, to exchange secured messages between interconnected small sized non-public networks. SBC has the functionalities of SCP for proxying and SEPP for encrypting messages. As part of the validation of the component registrations for roaming UEs were performed. The overhead introduced by SBC in the procedures was in average between 3-8 ms. Below in Figure 28, the traces for authentication request from FOKUS to UPV NPN is shown, transport layer security is applied on the communication between two domains resulting into encrypted message exchange. In Figure 29, the log shows SCP at FOKUS side received the authentication request from AMF, which it forwards to the UPV SCP that is shown by the log in Figure 30. Once the roaming UE is authenticated by the home network, it will get registered in the visited network. In Figure 31, the UE from UPV is registered at the network of FOKUS is shown using the command output in AMF.

Source	Destination	Protocol	Length Info		
192.168.13.80	192,168,13,120	HTTP2	90 Magic		
192.168.13.80	192.168.13.120	HTTP2	93 SETTINGS[0]		
192.168.13.80	192.168.13.120	HTTP2	79 WINDOW UPDATE F01		
192 168 13 80	192 168 13 120	HTTP2	261 HEADERS[1]: POST /nausf-auth/v1/ue-authentications		
192 168 13 80	192 168 13 120	HTTP2	207 DaTa[1] (annication/ison)		
102 168 13 120	102 168 13 80	HTTD2	21 STTLINGER		
102 168 13 80	192 168 13 129	HTTD2	75 SETTINGSIG		
192 168 110 16	192 168 110 15	TLSv1 3	569 Client Hello		
102 168 110 15	192 168 110 16	TL Sv1 3	1407 Server Hello Change Cinber Spec Application Data Application Data Application Data Application Data		
192.168.110.16	192.168.110.15	TLSv1.3	132 Change Cinber Spec, Annlication Data		
192.168.110.16	192.168.110.15	TLSv1.3	618 Application Data		
192 168 110 15	192 168 110 16	TLSv1.3	578 Application Data Application Data		
192,168,110,15	192,168,110,16	TLSv1.3	110 Application Data		
192 168 110 16	192 168 110 15	TLSv1_3	83 Application Data		
192.168.110.15	192.168.110.16	TLSv1.3	535 Application Data		
192 168 110 16	192 168 110 15	TLSv1 3	240 Application Data		
192, 168, 13, 120	192, 168, 13, 80	HTTP2			
192 168 13 120	192 168 13 80	HTTP2	184 HEADERS[1]: 201 Created		
192 168 13 120	192 168 13 80	HTTP2			
192.168.13.80	192.168.13.120	HTTP2	90 Maric		
192.168.13.80	192,168,13,120	HTTP2	93 SETIINGS[0]		
192,168,13,80	192,168,13,120	HTTP2	79 WINDOW UPDATEI01		
192.168.13.80	192.168.13.120	HTTP2	298 HEADERS[1]: PUT /pausf-auth/v1/ue-authentications/2360555b-d3f0-4353-bef4-771102efeb0a/5g-aka-confirmation		
192,168,13,80	192,168,13,120	HTTP2	125 DATA[1] (application/ison)		
192.168.13.120	192.168.13.80	HTTP2	81 SETTINGSIDI		
192.168.13.80	192.168.13.120	HTTP2			
192,168,13,120	192,168,13,80	HTTP2	75 SETTINGSIOI		
192.168.13.120	192.168.13.80	HTTP2	178 HEADERS(1): 200 OK		
192.168.13.120	192,168,13,80	HTTP2	229 DATA[1] (application/ison)		
E	100004000	100 400	AAO AE AOO ACO AAO AC TICA O EZO Antication Data Annication Data		
50 /	120091008 .	192.108	110.15 192.108.110.16 TESVI.3 578 Application Data, Application Data		
58.7	122217010	102 168	110 15 102 168 110 16 TISv1 2 110 Annlication Data		
Erame 56	578 hytes	nn wire	(4624 hits) 578 bytes captured (4624 hits) on interface wow id 2		
Procession	t dete	on wire	(4024 bits), oro bytes captured (4024 bits) on interrate ago, in 2		
кам раске	et data				
Internet	Protocol Ve	rsion 4	. Src: 192.168.110.15. Dst: 192.168.110.16		
Tropomio	ion Control	Drotoo	3 Sto Dort: 442 Dort: 42004 Son: 1256 Ack: 1164 Lon: 526		
IT attsitus:	STOIL COULLOT	PLOCOCO	JI, SIC POIL. 443, DSL POIL. 42084, Seq. 1350, ACK. 1104, Len. 520		
 Transport 	t Layer Secu	rity			
- TLSv1	3 Record Lay	/er · Anr	lication Data Protocol: http.over.tls		
* 10011	T NCCOLU LU				
upa	que iype: Ap	piicati	on Data (23)		
Ver	sion: TLS 1	2 (0x03	03)		
Len	Length: 258				
Enc	Encrypted Application Data: 493307a50be1613b16f868008c24018ee113961cec3118ce				
TI Cud	2 Decord Los	And	lighting Data Dratagal, http://www.tla		
Opaque Type: Application Data (23)					
Vor	sion TIS 1	2 (0x03	93)		
ver	31011. 113 1.	2 (0/03			
Len	gtn: 258				

Figure 30: Trace for encrypted message exchange from FOKUS NPN to UPV NPN through SBC

1/0/08056860160/260001	1/1.01.38 THE	CO:http://ph.http://connection	
140408950800100/209991	14:01:56 INF	of http://http://http://http://teal.ctealup//.oos/ ctealed up http://teal.ctealed.up	
140409971918592/269991	14:01:38 INF	0:Platform:tcp_accept():486> New TCP connection accepted!	
140409971918592/269991	14:01:38 INF	0:http2:ph_http2_server_connection_handler():719> New HTTP2 Client connection: [amf.cp]:45924 @fd(15)	
140409971918592/269991	14:01:38 INF	0:Platform:phoenix spawn with id thread():146> spawned a thread with rank 26 and the thread id 140408948467456	
140408956860160/269991	14:01:38 INF	0:Platform:phoenix init exec unit thread():110> Exiting exec unit thread, rank is 26 thread id [140408956860160]	Applica
140408948467456/269991	14:01:38 NOTIC	E:scp:scp rest api handler():171> Request handler called	
140408948467456/269991	14:01:38 INF	0:rest api:rest handle http request():741> response will be sent asynchronously	
140409460225792/269991	14:01:38 INF	0:scp:scp resp handler():82> Response handler called	
140409460225792/269991	14:01:38 WAR	<pre>RN:scp:scp remove from kvp list():58> Key [:status] was not found in list</pre>	
140409460225792/269991	14:01:38 INF	0:scp:scp_resp_handler():105> Response forwarded	
140408965252864/269991	14:01:38 INF	0:http2:ph_http2_server_client_conn_thread_cleanup():668> Cleaned up HTTP2 Client connection.	
140408965252864/269991	14:01:38 INF	0:Platform:phoenix_init_exec_unit_thread():110> Exiting exec unit thread, rank is 26 thread id [140408965252864]]
140409971918592/269991	14:01:38 INF	<pre>Platform:tcp_accept():486> New TCP connection accepted!</pre>	
140409971918592/269991	14:01:38 INF	0:http2:ph_http2_server_connection_handler():719> New HTTP2 Client connection: [amf.cp]:45930 @fd(16)	
140409971918592/269991	14:01:38 INF	0:Platform:phoenix_spawn_with_id_thread():146> spawned a thread with rank 26 and the thread id 140408940074752	
140408940074752/269991	14:01:38 NOTIC	E:scp:scp rest api handler():171> Request handler called	
140408940074752/269991	14:01:38 INF	0:rest_api:rest_handle_http_request():741> response will be sent asynchronously 2/1500	
140409946740480/269991	14:01:38 INF	0:scp:scp_resp_handler():82> Response handler called	
140409946740480/269991	14:01:38 WAR	<pre>N:scp:scp_remove_from_kvp_list():58> Key [:status] was not found in list</pre>	
140409946740480/269991	14:01:38 INF	0:scp:scp_resp_handler():105> Response forwarded	
140408948467456/269991	14:01:38 NOTIC	E:scp:scp rest api handler():171> Reguest handler called	
140408948467456/269991	14:01:38 INF	0:rest api:rest handle http request():741> response will be sent asynchronously	
140409460225792/269991	14:01:38 INF	0:scp:scp resp handler():82> Response handler called	
140409460225792/269991	14:01:38 WAR	N:scp:scp remove from kyp list():58> Key [:status] was not found in list	

Figure 31: FOKUS SCP received message from AMF for authentication

140688062658304/37585	14:01:38	INF0:Platform:tcp_accept():486> New TCP connection accepted!
140688062658304/37585	14:01:38	INF0:http2:ph_http2_server_connection_handler():719> New HTTP2 Client connection: [scp.mgmt]:41210 @fd(15)
140688062658304/37585	14:01:38	INF0:Platform:phoenix spawn with id thread():146> spawned a thread with rank 26 and the thread id 140687223813888
140687223813888/37585	14:01:38	NOTICE:scp:scp rest api handler():171> Request handler called
140687223813888/37585	14:01:38	INF0:rest api:rest handle http request():741> response will be sent asynchronously
140687953618688/37585	14:01:38	INF0:scp:scp resp handler():82> Response handler called
140687953618688/37585	14:01:38	WARN:scp:scp_remove_from_kvp_list():58> Key [:status] was not found in list
140687953618688/37585	14:01:38	INF0:scp:scp_resp_handler():105> Response forwarded
140687223813888/37585	14:01:38	NOTICE:scp:scp_rest_api_handler():171> Request handler called
140687223813888/37585	14:01:38	INF0:rest_api:rest_handle_http_request():741> response will be sent asynchronously
140687962011392/37585	14:01:38	INF0:scp:scp resp handler():82> Response handler called
140687962011392/37585	14:01:38	WARN:scp:scp remove from kvp list():58> Key [:status] was not found in list
140687962011392/37585	14:01:38	INF0:scp:scp resp handler():105> Response forwarded
140687223813888/37585	14:01:38	NOTICE:scp:scp rest api handler():171> Request handler called
140687223813888/37585	14:01:38	INF0:rest_api:rest_handle_http_request():741> response will be sent asynchronously
140687953618688/37585	14:01:38	INF0:scp_resp_handler():82> Response handler called
140687953618688/37585	14:01:38	WARN:scp:scp_remove_from_kvp_list():58> Key [:status] was not found in list
140687053618688/37585	14.01.38	TNEO.scn.scn resp handler():1055 Response forwarded

Figure 32: UPV SCP received message from FOKUS SCP for authentication

140318343141120/2609 14:09:46	INF0:amf:amf ue context set rm state():493> [UE-2] 3GPP Access Registration Management State changed to [RM-REGISTERED]
140317982451456/2609 14:09:46	INF0:amf:amf_nas_dispatcher():213> Received NAS REGISTRATION COMPLETE message for UE Context 2
140317982451456/2609 14:09:46	<pre>wARN:Platform:str_dup_impl():110> empty source ph str(trace: nas msg decode hdr)</pre>
140317982451456/2609 14:09:46	INF0:amf:amf_registration_rcv_registration_complete():105> [UE-2] Registration (286): REGISTRATION COMPLETE received
140317982451456/2609 14:09:46	INF0:amf:amf_nas_config_update_start():57> [UE-2] NAS Generic UE Configuration Update (294): Starting
140317982451456/2609 14:09:46	INF0:amf:amf_ngap_nas_transport_send_DownlinkNASTransport():391> Preparing NGAP DownlinkNASTransport message
140317982451456/2609 14:09:46	INF0:amf:amf_ngap_nas_transport_send_DownlinkNASTransport():403> Preparing DownlinkNASTransport message
140317982451456/2609 14:09:46	INF0:amf:amf_ngap_nas_transport_send_DownlinkNASTransport():436> Successfully sent NGAP DownlinkNASTransport message
140317982451456/2609 14:09:46	INF0:amf:amf_nas_config_update_start():144> [UE-2] NAS Generic UE Configuration Update (294): NAS CONFIGURATION UPDATE COMMAND sent
140317982451456/2609 14:09:46	INF0:amf:amf_ngap_nas_transport_rcv_UplinkNASTransport():477> Successfully processed NGAP UplinkNASTransport message
14:10:14>AMF.amf.ue.print_contex	ts
140318385104640/2609 14:10:15	INF0:command:execute_module_cmd():161> cmd reply:
UE Context List:	
UE-0000000001 imsi-99999123456	7891 0x12000001 gNB: 0 3GPP: [RM-DEREGISTERED CM-IDLE] Non-3GPP: [RM-DEREGISTERED CM-IDLE] PDU Sess: [0]
UE-000000000 imci-00101122456	7997 AV12000002 AND: 1001 2000; [DN_DECTSTERED CN_CONNECTED] Non-2000; [DN_DEPECTSTERED CM_TDLE] DDU Secc. [0]

Figure 33: UE belongs to UPV network registered and connected FOKUS network

5.6. Multicast

UPV has developed a prototype or minimum viable product to include the multicast/broadcast feature in the 5G Core, also known as 5G Multicast/Broadcast Services or 5MBS. This prototype is located in UPV premises and it is based on an extension of the FOKUS Open5GCore. Some initial tests using iperf have been already carried out and documented in D2.5 [16], which showed a small degradation of the multicast NFs when compared against their unicast counterparts. The overall prototype diagram can be seen in the figure below:

Figure 34: 5MBS prototype diagram, with the two tests carried out: one using iperf and documented in D2.5, and the other featuring video delivery and measuring the bandwidth over N3mb.

To validate the advantages of multicast i.e. that the number of users consuming multicast content has no effect on the total bandwidth coursed through the core; a video delivery experiment using ffmpeg has been devised, using a variable of virtualized users and gNBs in different topologies. The video delivery experiments are composed of two main tests, one having a 1 to 1 mapping between UE and gNB e.g. 1 UE, 1 gNB experiment; 2 UEs, 2 gNBs... and the other leaving one gNB fixed and varying the number of UEs. The traffic is measured over the N3mb interface, using the Linux console tool iftop, then the output is parsed and processed.

The first video is a 4K quality recorded video from a smartphone, with 2:47 duration and 6 Mb/s average bit rate. The video is sent twice, with a manual restart, to see if the tool is correctly capturing the traffic over N3mb.

The first video is a 4K quality recorded video from a smartphone, with 2:47 duration and 6 Mb/s average bit rate. The video is sent twice, with a manual restart, to see if the tool is correctly capturing the traffic over N3mb. The test has been carried out for 1, 2 and 3 UEs-gNBs pairs. Figure 33 contains the obtained graphs:

Figure 35: Bandwidth captured over the N3mb of the 5MBS prototype, with a variable number of UEs.

It can be concluded that the prototype is correctly sending the data in a point-to-multipoint mode over the 5G Core, as the graphs are very similar even if the number of UEs is variable. However, it can be seen that the bandwidth is saturating at 12 Mb/s, as all the peaks fall into the same range. In other words, the Multicast/Broadcast UPF is dropping video packets when this value is reached. The reasons for this incorrect performance have not been identified, as the prototype is implemented over several abstractions, including virtualized resources over a hypervisor.

The second video delivery test considers this newfound saturation threshold. The video sent is in lower quality, recorded with a smartphone camera, with an average bitrate of 1.6 Mb/s. In this test, 2 different flows are launched to 2 UEs over multicast, in two different experiments: one using 1 gNB and the other using 2 gNBs. The video is also launched twice for every service to increase the duration. The results are shown in the Figure below:

Figure 36: Video delivery experiment over 5MBS, using 2 Multicast flows to 2 UEs who are attached to 1 gNB (left) and 2 gNBs (right).

From the graphs, it can be derived that they are significantly different between them. This is introduced due to the human factor, where each service is launched and stopped manually for every setup, creating a new realization of the experiment and component under test. Nevertheless, the peaks still reach around 2.5 Mb/s for both cases and there is a significant bandwidth drop around 150 seconds which is the duration of the original video, before it gets relaunched again. It can be concluded that varying the number of gNBs has no effect on the multicast properties of the prototype.

This component is in an experimental phase has not been used in any use case of FUDGE-5G.

6. Conclusions

This deliverable provided a final report on the validation of FUDGE-5G components with vertical trials. Although some of the components do not have an extensive validation procedure, most of the validations were carried out in field trials. In trial validations, sometimes can be difficult to separate and obtain data for each component, as it is much more intuitive and meaningful to collect KPIs for the entire trial platform setup. Despite that barrier, throughout the previous sections, and for each component, the document highlighted how the validation work has been performed, what was collected, what were the outcomes and results and what they mean in terms of validation. Later, in D4.3, further results will be reported, giving more focus on the validation of the trials as a whole and not on single components.

7. References

- [1] FUDGE-5G Consortium, "D1.3: FUDGE-5G Platform Architecture Final Release," 2022.
- [2] 3GPP, "TS 23.280: Common functional architecture to support mission critical services; Stage 2," May 2022. [Online]. Available: https://www.3gpp.org/ftp/Specs/archive/23_series/23.280/23280-h90.zip.
- [3] FUDGE-5G Consortium, "D3.2: FUDGE-5G On-boarding and Deploying of the Vertical Use Cases," 2023.
- [4] FUDGE-5G Consortium, "D4.3: Final Technical Validation of 5G Components with Vertical Trial," 2023.
- [5] 3GPP, "TS 23.502: Procedures for the 5G System (5GS)," December 2022. [Online]. Available: https://www.etsi.org/deliver/etsi_ts/123500_123599/123502/17.07.00_60/ts_123 502v170700p.pdf.
- [6] FUDGE-5G Consortium, "D1.2: FUDGE-5G Platform Architecture: Components and Interfaces," 2021.
- [7] FUDGE-5G Consortium, "D2.1: FUDGE-5G Technology Components and Platform Interim Release," 2021.
- [8] FUDGE-5G Consortium, "D2.4: Disintegrated Network Functions for Cloud-native Service Orchestration," 2022.
- [9] 3GPP, "TS 23.501: System architecture for the 5G System (5GS)," March 2022.
 [Online]. Available: https://www.3gpp.org/ftp//Specs/archive/23_series/23.501/23501-f30.zip.
- [10] FUDGE-5G Consortium, "D4.1: Interim Technical Validation of 5G Components with Vertical Trials," 2022.
- [11] 3GPP, "TS 24.535: 5G System (5GS); Device-Side Time Sensitive Networking (TSN) Translator (DS-TT) to Network-Side TSN Translator (NW-TT) protocol aspects; Stage 3," November 2020. [Online]. Available: https://www.3gpp.org/ftp//Specs/archive/24_series/24.535/24535-g20.zip.

- [12] IEEE Standard for Local and metropolitan area networks -- Bridges and Bridged Networks - Amendment 25: Enhancements for Scheduled Traffic, 802.1Qbv-2015, 2015.
- [13] IEEE Standard for Local and metropolitan area networks--Frame Replication and Elimination for Reliability, 802.1CB-2017, 2017.
- [14] IEEE Standard for Local and Metropolitan Area Networks--Timing and Synchronization for Time-Sensitive Applications, 802.1AS-2020, 2020.
- [15] IEEE Standard for Local and metropolitan area networks -- Bridges and Bridged Networks -- Amendment 26: Frame Preemption, 802.1Qbu-2016, 2016.
- [16] FUDGE-5G Consortium, "D2.5: FUDGE-5G Technology Components and Platform Final Release," 2022.

8. Annex A

The following screenshots showcase the overall output by several NFs obtained when validating the Onesource NEF.

• Screen cap of the AF logs

Screencap of the NEF logs

2023-02-17 15:22:46,623 -GW - INFO - - REGISTER NF - NF_INSTANCE_ID: 773106d9-eee7-44d6-8891-f26adbaf8991, NF: NEF NF_URL: nef.fudge:8500 2023-02-17 15:22:46,625 - GW - INFO - - PUT Request to 172.16.210.15:8080/nnrf-nfm/v1/nf-instances/773106d9-eee7-44 d6-8891-f26adbaf8991 2023-02-17 15:22:46,625 - GW - INFO - - PUT SSL: False REQUEST HOST: 172.16.210.15:8080 - URL: /nnrf-nfm/v1/nf-inst ances/773106d9-eee7-44d6-8891-f26adbaf8991 - HEADERS: {'Content-Type': 'application/json'} - BODY: {"nfInstanceId": "773106d9-eee7-44d6-8891-f26adbaf8991", "nfInstanceName": "string", "nfType": "NEF", "nfStatus": "REGISTERED", "ip "773106d9-eee7-44d6-8891-f26adbaf8991", "nfInstanceName": "string", "nfType": "NEF , nfStatus : REGISTERD , ip v4Addresses": ["nef.fudge:8500"]} 2023-02-17 15:22:46,915 - GW - INFO - REGISTER NF RESPONSE - STATUS: 201 2023-02-17 15:22:46,919 - GW - INFO - REGISTER NF RESPONSE - HEADERS: HTTPHeaderMap([(b'content-length', b'389'), (b'user-agent', b'Open5GCore/Phoenix 5.0'), (b'content-type', b'application/json'), (b'access-control-allow-origin ', b'*'), (b'access-control-allow-headers', b'content-type, *'), (b'server', b'nghttpx'), (b'via', b'2 nghttpx')]) 2023-02-17 15:22:46,921 - GW - INFO - REGISTER NF RESPONSE - BODY: {'nfInstanceId': '773106d9-eee7-44d6-8891-f26a dbaf8991', 'nfInstanceName': 'string', 'nfType': 'NEF', 'nfStatus': 'REGISTERED', 'heartBeatTimer': 5, 'ipv4Address es': ['nef.fudge:8500'], 'priority': 0, 'capacity': 0, 'load': 0, 'nfServicePersistence': False, 'nfProfileChangesS upportInd': False, 'nfProfileChangesInd': False, 'lcHSupportInd': False, 'olcHSupportInd': False} 2023-02-17 15:22:46,921 - GW - INFO - REGISTER NF RESPONSE VALID * Serving Quart app 'gw' * Serving Quart app 'gw'
* Environment: production * Please use an ASGI server (e.g. Hypercorn) directly in production

Screencap of the PCF logs

140100133500672/183731 16:26:07	<pre>INFO:Platform:tcp_accept():486> New TCP connection accepted!</pre>
140100133500672/183731 16:26:07	INFO:http2:ph_http2_server_connection_handler():719> New HTTP2 Client connection: [192.168.11.2
]:55696 @fd(17)	
140100133500672/183731 16:26:07	INFO:Platform:phoenix_spawn_with_id_thread():146> spawned a thread with rank 26 and the thread
id 140099576637184	
140099576637184/183731 16:26:07	WARN:Platform:phoenix_mem_prealloc_realloc():611> http2_req_mem_pool: can't realloc 0x7f6baa3f0
a28 because it is not the last all	location from this pool
140099576637184/183731 16:26:07	INFO:pcf:ApplicationSessionsCollectionAPI_postAppSessions_req_handler():1559> PCF received http
POST request for create Applicati	lon Sessions from AF/NEF.
140099576637184/183731 16:26:07	INFO:pcf:pcf_session_binding():93> sesseion binding by ipv4, received ipv4 address from app-ses
sion request is: 192.168.6.1	
140099576637184/183731 16:26:07	<pre>INFO:pcf:pcf_ht_find_individual_sm_policy():340> found_indi_smpolicy smpolicyId: c16b5e64-fde9-</pre>
4308-9189-13c8fefb747f	
140099576637184/183731 16:26:07	<pre>INF0:pcf:pcf_ht_new_individual_app_session_context():212> finish Creating a new individual app</pre>
session context with appSessionId:	: c84c417a-cbac-4174-96bc-3373ef805598
140099576637184/183731 16:26:07	<pre>INFO:pcf:pcf_indi_app_session_context_create():550> Traffic Influence data route_to_location is</pre>
empty	
140099576637184/183731 16:26:07	<pre>INFO:pcf:pcf_event_subscription_create():158> Start event subscription process</pre>
140099576637184/183731 16:26:07	<pre>INFO:pcf:pcf_af_procedure_operation():989> AF Traffic data is empty</pre>
140099576637184/183731 16:26:07	<pre>INFO:pcf:pcf_af_procedure_operation():995> PCF received Media Components data from AF</pre>
140099576637184/183731 16:26:07	<pre>INFO:pcf:pcf_smpolicy_update_notify_request():837> notification_uri is : http://192.168.11.40:8</pre>
080/npcf-smpolicycontrol/v1	
140099576637184/183731 16:26:07	<pre>INFO:pcf:pcf_smpolicy_update_notify_request():848> Successfully sent pcf update notification</pre>

• Screencap of the NRF logs

15:29:33	INFO:Platform:tcp accept():486> New TCP connection accepted!
15:29:33	INF0:http2:ph_http2_server_connection_handler():719> New HTTP2 Client connection: [192.168.13.2]:40472 @fd(30)
15:29:33	INFO:Platform:phoenix_spawn_with_id_thread():146> spawned a thread with rank 26 and the thread id 139724438087424
15:29:33	INFO:nrf_server:NFInstanceID_register():138> Registering NFInstance NF: NEF, ID: cb0f03fe-cd63-4e4b-97f2-78aff45df4c6
15:29:33	INFO:nrf_server:nf_status_event_start():93> Sending Subscription Updates of NF: cb0f03fe-cd63-4e4b-97f2-78aff45df4c6
15:29:33	INFO:Platform:phoenix_spawn_with_id_thread():146> spawned a thread with rank 1 and the thread id 139724429694720
15:29:33	NOTICE:nrf_server:NFInstanceID_register():162> Registering NFInstance NF: NEF, ID: cb0f03fe-cd63-4e4b-97f2-78aff45df4c6
15:29:33	INFO:Platform:phoenix_init_exec_unit_thread():110> Exiting exec_unit_thread, rank is 1 thread id [139724429694720]
15:30:19	INF0:http2:ph_http2_server_client_conn_thread_cleanup():668> Cleaned up HTTP2 Client connection.
15:30:19	INFO:Platform:phoenix_init_exec_unit_thread():110> Exiting exec_unit_thread, rank is 26 thread id [139724446480128]
15:30:19	INF0:http2:ph_http2_server_client_conn_thread_cleanup():668> Cleaned up HTTP2 Client connection.
15:30:19	INFO:Platform:phoenix_init_exec_unit_thread():110> Exiting exec_unit_thread, rank is 26 thread id [139725133063936]
15:30:19	INF0:http2:ph_http2_server_client_conn_thread_cleanup():668> Cleaned up HTTP2 Client connection.
15:30:19	INFO:Platform:phoenix_init_exec_unit_thread():110> Exiting exec_unit_thread, rank is 26 thread id [139724463265536]
15:30:19	INFO:http2:ph_http2_server_client_conn_thread_cleanup():668> Cleaned up HTTP2 Client connection.
15:30:19	INFO:Platform:phoenix_init_exec_unit_thread():110> Exiting exec_unit_thread, rank is 26 thread id [139725149849344]
15:30:19	INF0:http2:ph_http2_server_client_conn_thread_cleanup():668> Cleaned up HTTP2 Client connection.
15:30:19	INFO:Platform:phoenix_init_exec_unit_thread():110> Exiting exec_unit_thread, rank is 26 thread id [139725107885824]
15:30:19	INFO:http2:ph_http2_server_client_conn_thread_cleanup():668> Cleaned up HTTP2 Client connection.
15:30:19	INFO:Platform:phoenix_init_exec_unit_thread():110> Exiting exec_unit_thread, rank is 26 thread id [139725124671232]
15:30:19	INF0:http2:ph_http2_server_client_conn_thread_cleanup():668> Cleaned up HTTP2 Client connection.
15:30:19	INFO:Platform:phoenix_init_exec_unit_thread():110> Exiting exec_unit_thread, rank is 26 thread id [139724471658240]
15:30:33	INF0:http2:ph_http2_server_client_conn_thread_cleanup():668> Cleaned up HTTP2 Client connection.
15:30:33	INFO:Platform:phoenix_init_exec_unit_thread():110> Exiting exec_unit_thread, rank is 26 thread id [139724438087424]
15:30:36	INFO:Platform:tcp_accept():486> New TCP connection accepted!
15:30:36	INFO:http2:ph_http2_server_connection_handler():719> New HTTP2 Client connection: [192.168.13.2]:40498 @fd(14)
15:30:36	INFO:Platform:phoenix_spawn_with_id_thread():146> spawned a thread with rank 26 and the thread id 139724421302016
15:30:36	INFO:nrf_server:NFInstancesStoreAPI_search():52> Searching for NFInstance: NEF
15:30:36	INFO:nrf_server:NFInstancesStoreAPI_search():52> Searching for NFInstance: PCF
15:31:36	INFO:http2:ph_http2_server_client_conn_thread_cleanup():668> Cleaned up HTTP2 Client connection.
15:31:36	INFO:Platform:phoenix_init_exec_unit_thread():110> Exiting exec_unit_thread, rank is 26 thread id [139724421302016]

• Trace of messages in the NEF/AF

Time	Info
0.948238378	SETTINGS[0], HEADERS[1]: PUT /nnrf-nfm/v1/nf-instances/cb0f03fe-cd63-4e4b-97f2-78aff45df4c6, DATA[1],
1.015107567	HEADERS[1]: 201 Created
1.015107621	DATA[1], JavaScript Object Notation (application/json)
63.417941087	SETTINGS[0], HEADERS[1]: GET /nnrf-disc/v1/nf-instances?target-nf-type=NEF&requester-nf-type=NPCF
63.483577450	HEADERS[1]: 200 OK
63.483687705	DATA[1], JavaScript Object Notation (application/json)
63.680426730	SETTINGS[0], HEADERS[1]: GET /nnrf-disc/v1/nf-instances?target-nf-type=PCF&requester-nf-type=NPCF
63.744730186	HEADERS[1]: 200 OK
63.745693270	DATA[1], JavaScript Object Notation (application/json)
63.891301931	SETTINGS[0], HEADERS[1]: POST /npcf-policyauthorization/v1/app-sessions, DATA[1]
63.954619790	DATA[1], JavaScript Object Notation (application/json)
64.022177912	HEADERS[1]: 201 Created
64.022208690	DATA[1], JavaScript Object Notation (application/json)

Trace of messages in the 5G Core

582.898590491 Magic, SETTINGS[0], WINDOW_UPDATE[0], HEADERS[1]: PUT /nnrf-nfm/v1/nf-instances/773106d9-eee7-44d6-8891-f26adbaf8991, DATA[1] HEADERS[1]: 201 Created 582.899765124 582.900182684 DATA[1], JavaScript Object Notation (application/json) HEADERS[1]: POST /npcf-nfm/v1/subscriptionCallback DATA[1], JavaScript Object Notation (application/json) 583,410777556 583.410790661 583.412114103 HEADERS[1]: 204 No Content HEADERS[1]: POST /nausf-auth/v1/ue-authentications DATA[1], JavaScript Object Notation (application/json) 600,442491084 600.442502945 600.444293427 HEADERS[1]: POST /nudm-ueau/v1/suci-0-001-01-0-0-0-1234567891/security-information/generate-auth-data 600.444320986 DATA[1], JavaScript Object Notation (application/json) HEADERS[1]: 200 OK 600.446324120 600.446374166 DATA[1], JavaScript Object Notation (application/json) 600,446588679 HEADERS[1]: 201 Created 600.446596561 DATA[1] 600.447707802 HEADERS[1]: PUT /nausf-auth/v1/ue-authentications/dd99eaed-1ff7-4265-925e-bb3dcc190f85/5g-aka-confirmation DATA[1], JavaScript Object Notation (application/json) HEADERS[1]: POST /nudm-ueau/v1/imsi-001011234567891/auth-events 600.447720238 600,449746838 600.449757968 DATA[1], JavaScript Object Notation (application/json) 600.450292020 HEADERS[1]: 200 OK 600.450326255 DATA[1], JavaScript Object Notation (application/json) 600.451390741 HEADERS[1]: GET /nudm-sdm/v2/imsi-001011234567891/am-data 600.453238653 HEADERS[1]: 200 OK 600.453334317 DATA[1], JavaScript Object Notation (application/json) HEADERS[1]: POST /nsmf-pdusession/v1/sm-contexts 600.456183725 DATA[1], JavaScript Object Notation (application/json) (application/vnd.3gpp.5gnas) 600.456212378 HEADERS[1]: 201 Created DATA[1], JavaScript Object Notation (application/json) 600.456943323 600.456980149 600.458124838 HEADERS[1]: GET /nudm-sdm/v2/imsi-001011234567891/sm-data?dnn=default HEADERS[1]: 201 Created DATA[1], JavaScript Object Notation (application/json) 600,458802912 600.458838385 600.459731146 HEADERS[1]: 200 OK 600.459765996 DATA[1], JavaScript Object Notation (application/json) HEADERS[1]: POST /npcf-smpolicycontrol/v1/sm-policies 600.460547459 600.460558524 DATA[1], JavaScript Object Notation (application/json) 600.473184016 HEADERS[1]: 201 Created 600.473230255 DATA[1], JavaScript Object Notation (application/json) 600.497528160 HEADERS[1]: POST /namf-comm/v1/ue-contexts/imsi-001011234567891/n1-n2-messages DATA[1], JavaScript Object Notation (application/json), PDU session establishment accept HEADERS[1]: 200 OK 600,497553715 600.499845036 600.499885797 DATA[1], JavaScript Object Notation (application/json) 600.509875048 HEADERS[1]: POST /nsmf-pdusession/v1/sm-contexts/1/modify DATA[1], JavaScript Object Notation (application/json) (application/vnd.3gpp.ngap) HEADERS[1]: 200 OK 600.509893527 600.514651350 600.514673637 DATA[1], JavaScript Object Notation (application/json) Magic, SETTINGS[0], WINDOW_UPDATE[0], HEADERS[1]: GET /nnrf-disc/v1/nf-instances?target-nf-type=NEF&requester-nf-type=NPCF HEADERS[1]: 200 OK 615,018112935 615.018939552 615.019256719 DATA[1], JavaScript Object Notation (application/json) 615.282960487 HEADERS[3]: GET /nnrf-disc/v1/nf-instances?target-nf-type=PCF&requester-nf-type=NPCF HEADERS[3]: 200 OK 615,283498983 DATA[3], JavaScript Object Notation (application/json) Magic, SETTINGS[0], WINDOW_UPDATE[0], HEADERS[1]: POST /npcf-policyauthorization/v1/app-sessions, DATA[1] DATA[1], JavaScript Object Notation (application/json) 615.283806445 615.497506717 615.557318754 615.558850409 HEADERS[1]: POST /npcf-smpolicycontrol/v1/update DATA[1], JavaScript Object Notation (application/json) HEADERS[1]: 201 Created 615.558872478 615.559697081 615.560055703 DATA[1], JavaScript Object Notation (application/json) HEADERS[1]: 500 Internal Server Error DATA[1], JavaScript Object Notation (application/problem+json) 615.562085515 615.562124325 779.827920217 Magic, SETTINGS[0], WINDOW_UPDATE[0], HEADERS[1]: GET /nnrf-disc/v1/nf-instances?target-nf-type=NEF&requester-nf-type=NPCF HEADERS[1]: 200 OK DATA[1], JavaScript Object Notation (application/json) 779.828665670 779.828935305 HEADERS[3]: GET /nnf-disc/v1/nf-instances?target-nf-type=PCF&requester-nf-type=NPCF HEADERS[3]: 200 OK DATA[3], JavaScript Object Notation (application/json) 780.086233553 780,086759640 780.086940575 Magic, SETTINGS[0], WINDOW_UPDATE[0], HEADERS[1]: POST /npcf-policyauthorization/v1/app-sessions, DATA[1] DATA[1], JavaScript Object Notation (application/json) HEADERS[1]: POST /npcf-smpolicycontrol/v1/update 780.287815264 780.349779433 780.351303937 DATA[1], JavaScript Object Notation (application/json) 780.351333464 780.352174293 HEADERS[1]: 201 Created 780.352501209 DATA[1], JavaScript Object Notation (application/json) 780.354765632 HEADERS[1]: POST /namf-comm/v1/ue-contexts/imsi-001011234567891/n1-n2-messages 780.354783873 780.355616058 DATA[1], JavaScript Object Notation (application/json), PDU session modification command[Malformed Packet] HEADERS[1]: 204 No Content 780.358010121 HEADERS[1]: POST /nsmf-pdusession/v1/sm-contexts/1/modify 780.358042144 DATA[1], JavaScript Object Notation (application/json) (application/vnd.3gpp.5gnas) HEADERS[1]: POST /nsmf-pdusession/v1/sm-contexts/1/modify 780.358676081 780.358701532 DATA[1], JavaScript Object Notation (application/json) (application/vnd.3gpp.ngap) 780.359476662 HEADERS[1]: 200 OK

9. Annex B

The following tables describe the HTTP messaging exchange produced by Ubitech VAO in several test cases.

Test 1: Create Component Descriptor

Endpoint

http:/10.6.226.239:8080/api/v1/component (POST)

Request Body:

{"name":"MyComponent","scaling":"NONE","architecture":"X86","IfInterfaceType":"","pu blicComponent":false,"dockerRegistry":"ubitech-publicrepository.ubitech.eu","dockerImage":"mysql:5.5","dockerCredentialsUsing":true,"docker CustomRegistry":true,"dockerUsername":"maestro","dockerPassword":"!maestro!\$","req uirement":{"vCPUs":2,"ram":2048,"storage":20,"hypervisorType":"KVM","gpuRequired":f alse},"environmentalVariables":[{"key":"MYSQL_DATABASE","value":"example"},{"key":" MYSQL_ROOT_PASSWORD","value":"fudge"}],"exposedInterfaces":[{"name":"mysqlpublic II","port":"33096","interfaceType":"CORE","transmissionProtocol":"BOTH"}],"requiredInte rfaces":[],"healthCheck":{"name":"","httpURL":"","args":"mysqladmin -uroot --pfudge status","interval":10},"plugins":[{"pluginID":26}],"volumes":[],"devices":[],"labels":[{"labelI D":2,"name":"SQL Database"},{"labelID":8,"name":"Custom Component"}],"hostname":"","networkModeHost":false,"privilege":false,"user":null,"oga nization":null}

Response

201 Created

Response Body

Test 2: Fetch Service Graph

Endpoint

http://10.6.226.239:8080/api/v1/application/267 (GET id==267)

Request Body:

Response

200 OK

Response Body

{"code":"23","message":"Application has been fetched successfully","returnobject":{"id":267,"hexID":"AJB1JayvQm","name":"ABC","publicApplic ation":false,"componentNodes":[{"componentNodeID":915,"hexID":"W1cunD9PJF","nam e":"MyComponent1301","component":{"id":130,"name":"MyComponent","hexID":"CdBK Gtg08u","publicComponent":false,"dateCreated":null,"lastModified":null,"scaling":null,"e xposedInterfaces":[{"interfaceID":109,"name":"mysqlpublicII","port":"33096","interfaceTy pe":"CORE","transmissionProtocol":"BOTH","componentID":null,"dateCreated":null,"last Modified":null}],"allowEdit":null,"allowDelete":null,"organization":"Admin_Organization"} }],"graphLinkNodes":null,"organization":"Admin_Organization"}