

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement Nº 957242.

Partners

Deliverable 2.5

Technology Components and

Platform – Final Release

Version 1.0

Work Package 2

Main authors Sebastian Robitzsch (IDE)

Distribution Public

Delivery date 30 November 2022 (M27)

Delivered date 12 December 2022 (M28)

© FUDGE-5G project consortium partners

 Page 2 of 41

D2.5 Technology Components and Platform

Disclaimer
This document contains material that is copyright of certain FUDGE-5G consortium

partners and may not be reproduced or copied without permission. The content of this

document is owned by the FUDGE-5G project consortium. The commercial use of any

information contained in this document may require a license from the proprietor of that

information. The FUDGE-5G project consortium does not accept any responsibility or

liability for any use made of the information provided on this document.

All FUDGE-5G partners have agreed to the full publication of this document.

Project details

Project title: FUlly DisinteGrated private nEtworks for 5G verticals
Acronym: FUDGE-5G
Start date: September 2020
Duration: 30 months
Call: ICT-42-2020 Innovation Action

For more information

Project Coordinator
Prof. David Gomez-Barquero
Universitat Politecnica de Valencia
iTEAM Research Institute
Camino de Vera s/n
46022 Valencia
Spain

http://fudge-5g.eu
info@fudge-5g.eu

Acknowledgement

FUDGE-5G has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement Nº 957242. The European Union has no

responsibility for the content of this document.

 Page 3 of 41

D2.5 Technology Components and Platform

Abstract
The last FUDGE-5G WP2 deliverable mainly serves as a reference document for Enterprise

Service vendors who aim to develop software that is orchestrated over a cloud-native

Service-Based Architecture platform. While offering detailed platform API documentation,

D2.5 also describes experiences of technical challenges with Enterprise Service applications

regarding their cloud-nativeness. The deliverable also describes the testbed set-up where

all platform components have been integrated with a selected set of Enterprise Services.

Lastly, the integration efforts of IP Multicast on the 5G user plane are described in this

deliverable.

 Page 4 of 41

D2.5 Technology Components and Platform

Versioning and Contributions

Versioning

Description Contributors

0.1 Table of contents IDE

0.2 SFV Orchestrator API description IDE

0.3 Changes to SFV resource descriptor definition IDE

0.4 SFV API refinement, VAO documentation IDE, UBI

0.5 VAO documentation draft UBI

0.6 VAO documentation update based on IDE feedback UBI, IDE

0.7 VAO documentation update and feedback UBI, ONE

0.8 Integration Challenges IDE

0.9 5G Multicast Broadcast section, Cloud-Native
orchestration of 5G Cores, VAO section update

UPV, IDE, UBI

1.0 Final version IDE

Contributors

Partner Authors

IDE Sebastian Robitzsch, Mohamad Kenan Al-Hares

UBI Thanos Xirofotos

ONE André Gomes

UPV Carlos Barjau, Borja Inesta

Reviewers

Reviewer Partner

Hergys Rexha AAU

Sébastian Lafond AAU

 Page 5 of 41

D2.5 Technology Components and Platform

Acronyms
5GC 5G Core
API Application Program Interface
CRUD Create Read Update Delete
NF Network Function
SC Service Chain
SCC Service Chain Controller
SCP Service Communication Proxy
SF Service Function
SFE Service Function Endpoint
SFEC Service Function Endpoint Controller
SFPR Service Function Package Repository
SFV Service Function Virtualisation
SFVO Service Function Virtualisation Orchestrator
VAO Vertical Application Orchestrator

 Page 6 of 41

D2.5 Technology Components and Platform

Executive Summary
The specification of 3GPP’s Service-Based Architecture (SBA) in Release 15 and 16 were

driven by the desire of the operators to deploy Core Networks as services and in a multi-

vendor fashion. This demand is deeply rooted in the necessity to build distinct networks

that are even more fully customisable for a broader use case applicability than generic

internet access and calling. However, because of the way 4G was designed, it did not allow

a rapid deployment and customisation of a (Core) Network to meet the requirement of

verticals such as education, media, health, industry, or emergency first response sectors.

The promises of 5G are put under trial in FUDGE-5G with WP2 covering the development

and initial integration efforts for a set of technologies.

On the premise of unifying key components of a cloud-native system that must reside

outside of the actual service, i.e. routing, orchestration and telemetry, FUDGE-5G has

positioned a platform layer between the service and the infrastructure which covers the

unified system aspects in their functionality. This deliverable partially serves as a reference

document, describing the Application Program Interfaces of the platform for Enterprise

Service developers. Furthermore, it also provides a detailed description of the challenges

the project had to overcome regarding the cloud-native software design of Enterprise

Services and operating it over the platform. Under the commonly used phrase at industry

events “cloud meets telecom”, it is no surprise that 5G introduced new challenges to

vendors, as they depart from a 4G model where cloud-native procedures and multi-vendor

environments were not a requirement.

Also, a detailed description of integrating IP multicast on the 5G user plane is provided in

this document, demonstrating the flexibility 5G enables based on its system architecture.

 Page 7 of 41

D2.5 Technology Components and Platform

TABLE OF CONTENTS

DISCLAIMER 2

ABSTRACT 3

VERSIONING AND CONTRIBUTIONS 4

VERSIONING 4
CONTRIBUTORS 4
REVIEWERS 4

ACRONYMS 5

EXECUTIVE SUMMARY 6

1 INTRODUCTION 8

2 PLATFORM COMPONENTS AND THEIR INTERFACES 9

2.1 SERVICE ROUTING 9
2.1.1 Registration 9
2.1.2 Deregistration 9

2.2 SERVICE FUNCTION VIRTUALISATION 9
2.2.1 User Management Interface Specification 11
2.2.2 Ssfpr1 Interface Specification 12
2.2.3 Sscc1 Interface Specification 14
2.2.4 Swai Interface Specification 17
2.2.5 Resource Descriptor 17

2.3 VIRTUAL APPLICATION ORCHESTRATION 19
2.3.1 Registration and Composition of an Application 20
2.3.2 Application Deployment 25
2.3.3 Runtime Policies 27

3 SYSTEM INTEGRATION 29

3.1 TESTBED INFRASTRUCTURE 29
3.2 TESTBED PLATFORM 30
3.3 5G CORE INTEGRATION CHALLENGES AND EXPERIENCES 32
3.4 5G MULTICAST BROADCAST 36

4 CONCLUSIONS 40

REFERENCES 41

 Page 8 of 41

D2.5 Technology Components and Platform

1 Introduction
Over the course of the last 28 months, FUDGE-5G has continuously worked on the

development and component integration based on the work in Work Package 1 (WP1). The

resulting deliverables D1.1 [FUD11] focussing on use cases and the validation framework,

combined with the architectural work published in D1.3 [FUD13], marks the foundation for

the work in Work Package 2 (WP2).

Deliverable D2.5 shall be used in conjunction with D1.3 (Final FUDGE-5G Platform

Architecture Components and Interface) and complements the system description with

detailed interface specifications for Enterprise Service developers aiming at developing

software in a cloud-native fashion for the 5G telco domain. As the FUDGE-5G project unifies

routing, orchestration and telemetry as a single Platform-as-a-Service (PaaS) offering, the

benefits of such unification shall be explored in more depth first. D2.2 offers a

comprehensive discussion around the unification aspects with benefits in the resource

scheduling domain. Like public cloud offerings of hyperscalers, the service developers must

not add code inside their services to perform routing, orchestration (as in scaling) or

telemetry (apart from reporting data points of interest). Externalisation and offering the

externalised functionality in a programmable and tenancy-enabled fashion is crucial for a

widespread acceptance of this methodology and is commonly described as the cloud-native

proposition. In order to achieve such clear separation of platform and service layers, D2.5

provides the detailed list of platform components and their interfaces that enable that.

Furthermore, D2.5 also provides a comprehensive description of the testbed where all

platform components and Enterprise Services were integrated and tested.

Directly linked with the design patterns for cloud-native 5G NFs published in D2.4 [FUD24],

D2.5 provides experiences in integrating the various 5GCs over the FUDGE-5G platform.

Due to the complexity of integrating IP multicast on the 5G User Plane, D2.5 also provides

the details of this work instead of D2.2.

 Page 9 of 41

D2.5 Technology Components and Platform

2 Platform Components and their Interfaces
This section presents the platform APIs Enterprise Service vendors may utilise in order to

get their application orchestrated. The section is structured along the FUDGE-5G platform

components, i.e. routing, orchestration and telemetry.

2.1 Service Routing

When using the SFVO or VAO to orchestrate Enterprise Services, there is no need to

communicate with the Service Routing (aka Service Communication Proxy (SCP)) directly.

However, the SCP of the FUDGE-5G platform exposes an open API to register and deregister

service endpoints using their FQDN and IP address. When orchestrating an Enterprise

Service, (depending on whether the application is a 5GC NF or vertical service) the SFVO or

VAO utilise the interface to inform the SCP that a new service endpoint is available and

which FQDN it serves.

As described in detail in D1.3 [FUD13], the SCP has an internal component entitled Service

Proxy Manager (SPM) which offers the registration API. The SPM is available from any IP

endpoint which has received an IP address over the SCP on the control plane. The FQDN to

use is “spm” on Port 8080. The Create Read Update Delete (CRUD) API is described in

further detail below.

2.1.1 Registration

The registration API offers to add a new FQDN to an existing IP address using the following

URI:

curl -X POST spm/flips/nm/domain/<fqdn>/srv/<ip>

where <ip> is the IP address of the endpoint and <fqdn> the FQDN to be registered.

2.1.2 Deregistration

The deregistration follows the same semantic as the registration with the difference of

using the DELETE HTTP method:

curl -X DELETE spm/flips/nm/domain/<fqdn>/srv/<ip>

2.2 Service Function Virtualisation

This section describes the RESTful interfaces of the Service Function Virtualisation

Orchestrator of the eSBA FUDGE-5G platform used to orchestrate 5GCs in a cloud native

fashion. The workflow for achieving that is illustrated in Figure 1 and depicts

responsibilities/actions for 5GC vendors and platform admins. Also, the figure illustrates

 Page 10 of 41

D2.5 Technology Components and Platform

activities that are conducted outside the SFVO and the ones that utilise APIs exposed by

the SFV Orchestrator.

Figure 1: Workflow for Provisioning Service Chain via Service Function Virtualisation Orchestrator

The “onboarding” process for 5GC vendors is provided in form of an online documentation

[GLT25] which comes with a set of bash scripts to package one or more software

executables into a Linux Container (LXC). These procedures are executed outside of a

deployed SFVO. Along with the packaging of a Service Function, the 5GC vendor is asked to

write a Resource Descriptor that defines how the Service Chain is composed of (which

Service Functions) and what properties each SF has, (e.g. compute, memory, storage). The

Resource Descriptor also allows the 5GC to define which SF is provisioned into which state

onto which Service Host. More information about this can be found in the next section.

Upon the completion of the “offline” actions, the platform administrator creates a new

user within the SFVO for the 5GC isolating all 5GCs from each other. Once done, the 5GC

vendor can upload their packaged Service Functions to the SFP repository (SFPR).

The implemented SFV architecture is provided in Figure 2 and illustrates the 5GC vendor

on the top left interfacing with the Service Function Package Repository (SFPR) and the

Service Chain Controller via the Ssfpr1 and Sscc1 interfaces, respectively. These two

interfaces are described in further detail in the following two sections.

 Page 11 of 41

D2.5 Technology Components and Platform

Figure 2: Implemented Service Function Virtualisation Architecture.

The interfaces 5GC vendors utilise are Ssfpr1 and Sscc1 which are documented in further

detail below. The other interfaces are SFV internal and are not described in their entirety.

A pre-recorded SFV Tour is available on YouTube as an unlisted video [YTSFV].

2.2.1 User Management Interface Specification

Both SCC and SFPR offer the same user management API for JSON Web Token (JWT)-based

authorisation. When the platform administrator created a new tenant account, SCC and

SFPR follow the same procedures for authentication. Each request to the SCC and SFPR API

requires a valid time limited JWT.

Resource HTTP Method Description

/login/<username> POST
Obtain JWT for using any of the APIs of the SCC
or SFPR.

2.2.1.1 /login/<username>

This resource accepts HTTP request with the method POST and a JSON-encoded payload

providing the password to the username in the resource. An example HTTP transaction is

provided below using CURL:

~$ curl -i -X POST scc:8080/login/fudge -H"Content-type: application/json" \
-d"{\"password\":\"fudge-5g-2020\"}"

HTTP/1.0 200 OK

 Page 12 of 41

D2.5 Technology Components and Platform

Content-Type: application/json
Content-Length: 287
Server: Werkzeug/2.0.2 Python/3.8.10
Date: Mon, 24 Jan 2022 20:37:01 GMT

{
 "token":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJmcmVzaCI6ZmFsc2UsImlhdCI6MTY0MzA1NjYyM
SwianRpIjoiYmIyMGM4OWUtYmY1YS00MTcxLThkODgtODcwYmJjNmVkNWZmIiwidHlwZSI6ImFjY2Vz
cyIsInN1YiI6ImFkbWluIiwibmJmIjoxNjQzMDU2NjIxLCJleHAiOjE2NDMwNTc1MjF9.4EMhbtbdr4
froOoDTT8kHPVGiW0p-mPWfo8F-Xme780"
}

2.2.2 Ssfpr1 Interface Specification

The SFPR offers the ability to manage packaged SFs, i.e. Service Function Packages (SFPs),

which are used at provisioning time to instantiate a Service Function as one or more Service

Function Endpoints on Service Hosts. The table below provides an overview of available

resources exposed by the SFPR on the Ssfpr1 interface towards the 5GC vendor.

Table 1: Summary Table of the Ssfpr1 SFV Interface.

Resource HTTP Method Description

/util GET Obtain the storage utilisation of the Service
Function Repository

/sfp POST Upload a SFP to the repository

/sfps GET Obtain the list of stored Service Function
Packages

/sfp/<sfpid> GET, DELETE When using the GET method the properties for a
Service Function Package are returned. The
response comes as JSON-encoded with the fields
size, mtime, sum and url.
When using the DELETE method the SFP is
deleted from the SFPR.

/sfp/<sfpid> DELETE Delete a Service Function Package using its
identifier

2.2.2.1 /util

This resource allows to check the total and used storage capacity of the SFPR. An example

HTTP transaction is provided below using CURL:

~# curl sfpr:8080/util -H"Authorization: Bearer $TOKEN"

 Page 13 of 41

D2.5 Technology Components and Platform

{
 "diskGB": 2.53888,
 "diskUsedGB": 0.58688
}

with $TOKEN being JWT obtain separately, as described in Section 2.2.1.1.

2.2.2.2 /sfp

To upload a new Service Function Package, the /sfp resource can be called via an HTTP

method POST. The SFPR responds with the SFP ID, e.g. db.lxc.tar.gz. An exemplary HTTP

transaction using CURL is provided below:

~$ curl -i -X POST sfpr:8080/sfp -H"Authorization: Bearer $TOKEN" \
-F "file=@amf.lxc.tar.gz"

HTTP/1.1 100 Continue

HTTP/1.0 201 CREATED
Content-Type: text/html; charset=utf-8
Content-Length: 13
Server: Werkzeug/2.0.0 Python/3.8.5
Date: Thu, 06 Jan 2022 18:32:44 GMT

amf.lxc.tar.gz

with $TOKEN being the JWT obtained beforehand using the resource defined in Section

2.2.1.1.

2.2.2.3 /sfps

This resource allows the 5GC vendor to obtain all previously uploaded SFPs. An example

HTTP transaction using the HTTP request method GET looks as follows:

~# curl -i sfpr:8080/sfps -H"Authorization: Bearer $TOKEN"
HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 36
Server: Werkzeug/2.0.2 Python/3.8.10
Date: Mon, 24 Jan 2022 21:08:04 GMT

["amf.lxc.tar.gz", "smf.lxc.tar.gz"]

with $TOKEN being the JWT obtained beforehand using the resource defined in Section

2.2.1.1.

2.2.2.4 /sfp/<sfpid>

This resource allows the 5GC vendor to obtain the properties of a SFP identified through its

SFPID such as the time when it was uploaded, its size in bytes, the SHA254 checksum and

the URL under which it can be downloaded (to be used in the Resource Descriptor). An

example HTTP transaction is provided below:

 Page 14 of 41

D2.5 Technology Components and Platform

~# curl -i sfpr:8080/sfp/amf.lxc.tar.gz -H"Authorization: Bearer $TOKEN"
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 174
Server: Werkzeug/2.0.2 Python/3.8.10
Date: Mon, 24 Jan 2022 21:18:53 GMT

{
 "mtime": 1643058393.6747239,
 "size": 0,
 "sum": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",
 "url": "/sfp/download/admin/amf.lxc.tar.gz"
}

with $TOKEN being the JWT obtained beforehand using the resource defined in Section

2.2.1.1.

The deletion of a SFP uses the same resource but with the HTTP method DELETE:

~# curl -i sfpr:8080/sfp/amf.lxc.tar.gz -H"Authorization: Bearer $TOKEN" -X
DELETE
HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 0
Server: Werkzeug/2.0.2 Python/3.8.10
Date: Mon, 24 Jan 2022 21:21:13 GMT

2.2.3 Sscc1 Interface Specification

The Sscc1 interface allows vendors to provision and manage Service Chains that form their

5GC. The table below provides an overview of available resources exposed by the SCC on

the Sscc1 interface towards 5GC vendors.

Resource HTTP Method Description

/chain POST
Submit a Resource Descriptor to request the
orchestration of a Service Chain.

/chains GET Obtain the list of provisioned Service Chains

/chain/<scid> GET, DELETE
Obtain the status of a provisioned Service Chain
or request to delete it.

/servicehosts GET Obtain a list of Service Hosts

2.2.3.1 /chain

This resource allows the submission of a Resource Descriptor, as further explained in

Section 2.2.4. The SCC returns a Service Chain Identifier (SCID) which must be used for

managing the SC. An example HTTP transaction using CURL is provided below:

 Page 15 of 41

D2.5 Technology Components and Platform

~$ curl -i -X POST scc:8080/chain -H"Content-Type: text/x-yaml" -
H"Authorization: Bearer $TOKEN" --data-binary @rd.yml
HTTP/1.0 200 ACCEPTED
Content-Type: text/html; charset=utf-8
Content-Length: 2
Server: Werkzeug/2.0.2 Python/3.8.10
Date: Mon, 24 Jan 2022 21:40:58 GMT

my5gc

with $TOKEN being the JWT obtained through the resource described in Section 2.2.1.1.

The SCC implements an internal scheduler and the above request is placed into a queue

which is processed in the background. Thus, the SCC confirms any new Resource Descriptor

with a 202 HTTP response.

2.2.3.2 /chains

This resource allows to request to list all available SCs for a specific user. The response is a

JSON-encoded list of SCs. An example HTTP transaction is provided below:

~# curl -i -H"Authorization: Bearer $TOKEN" scc:8080/chains
HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 2
Server: Werkzeug/2.0.2 Python/3.8.10
Date: Mon, 24 Jan 2022 21:44:09 GMT

["my5gc"]

with $TOKEN being the JWT obtained through the resource described in Section 2.2.1.1.

2.2.3.3 /chain/<scid>

This resource allows to request the status of a previously orchestrated SC.

~# curl -i -H"Authorization: Bearer $TOKEN" scc:8080/chain/my5gc
HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 2
Server: Werkzeug/2.0.2 Python/3.8.10
Date: Mon, 24 Jan 2022 21:44:09 GMT

["state": "provisioned"]

with $TOKEN being the JWT obtained through the resource described in Section 2.2.1.1.

Possible states this API returns are:

• requested: The orchestration request for this new Service Chain has been received

but the SCC has not started its provisioning

• provisioning: The Service Chain is currently being provisioned to all Service Hosts.

• provisioned: The Service Chain has been successfully provisioned.

 Page 16 of 41

D2.5 Technology Components and Platform

• eliminating: The Service Chain is currently being eliminated from all Service Hosts.

• eliminated: The Service Chain has been successfully eliminated.

• failed: The provisioning or elimination of the Service Chain has failed.

The state machine for the Service Chain states is illustrated below.

Figure 3: Service Chain States and Transitions.

2.2.3.4 /servicehosts

This resource allows the 5GC vendor to obtain a list of all available Service Hosts using the

HTTP method GET. An example HTTP transaction is provided below:

curl -i -H"Authorization: Bearer $TOKEN" scc:8080/servicehosts
HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 2
Server: Werkzeug/2.0.2 Python/3.8.10
Date: Mon, 24 Jan 2022 21:23:58 GMT

[
 {
 "name": "dc2-sh",
 "identifier": "fa:16:3e:9c:40:ec ",
 "capabilities":
 {
 "compute": 37,
 "memory": 25.513652,
 "storage": 797.57454,
 "ims": ["kvm", "lxc", "docker"]
 },

 "utilisation":

 Page 17 of 41

D2.5 Technology Components and Platform

 {
 "compute": 0.0,
 "memory": 0.708744,
 "storage": 3.565464
 }
 }
]

with $TOKEN being the JWT obtained through the resource described in Section 2.2.3.1.

The units for compute, memory and storage are number of logical cores, GB and GB,

respectively.

2.2.4 Swai Interface Specification

2.2.4.1 /whoami/<SFID>

The Swai interface of the SFEC offers SFEs the ability to query information about

themselves. The response comes as an JSON-encoded payload and is mainly extracted from

the resource descriptor submitted to the SCC initially.

curl -i -H"Authorization: Bearer $TOKEN" sfec:8080/whoami/fa:16:3e:b0:d2:91
HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 2
Server: Werkzeug/2.0.2 Python/3.8.10
Date: Mon, 21 Nov 2022 20:12:04 GMT
[
 {
 “sc”: “fokus”,
 “sf”: “nrf”,
 “sfids”: “nrf.fudge”,
 “sh”: “fa:16:3e:90:37:7e”
 }
]

2.2.5 Resource Descriptor

As defined in D1.2 [F5G12], the SCC offers a RESTful API to provision enterprise services,

e.g. 5G Cores, as a Service Chain (SC). Each SC must be described in regarding its required

resources and provisioning states. The definition is composed of three main areas:

• meta: Meta information describing the Service Chain and descriptor.

• service_functions: A list of all Service Functions that form the Service Chain and their

properties and required resources.

• provisioning: The declaration which Service Function is instantiated on which Service

Host in which state. Also, the number of instances can be declared here that are

available to be lifecycle managed through policies.

 Page 18 of 41

D2.5 Technology Components and Platform

The actual resource descriptor definition is provided below and is provided in YAML.

meta:
 definition_version:
 required: true
 type: string
 description: The version of the descriptor definition allowing
versioning and backwards compatibility
 service_chain:
 required: true
 type: string
 description: The name of the chain following a reverse TLD convention,
e.g. com.foo.vr.premium-users

service_functions:
 service_function:
 required: true
 type: string
 description: The name of the Service Function
 identifiers:
 required: true
 type: array
 type_schema: string
 description: The list of identifiers (FQDNs) for this service function
 identifiers_configs:
 required: false
 type: array
 identifier:
 required: true
 type: string
 description: One of the FQDN listed under identifiers
 suppress_http_requests_get:
 required: false
 type: bool
 description: Suppresses the delivery of HTTP requests (GET) to
servers when performing co-incidental multicast
 suppress_http_responses_post:
 required: false
 type: bool
 description: Suppress the delivery of HTTP responses (OK) to
servers when performing multicast for POSTs
 service_function_package_url:
 required: true
 type: string
 description: The URL from where the SFP can be obtained
 instance_manager:
 required: true
 type: string
 description: The instance manager type this SF has been packaged for,
e.g. LXC, Docker or Android
 compute:
 required: true

 Page 19 of 41

D2.5 Technology Components and Platform

 type: integer
 memory:
 required: true
 type: integer
 description: The demanded amount of memory for this SF in MB
 storage:
 required: true
 type: integer
 description: The demanded amount of storage for this SF in MB
 constraints:
 kernel_libraries:
 type: array
 type_schema: string

provisioning:
 service_function:
 required: true
 type: string
 description: The name of the Service Function, as declared under
service_functions > name
 service_host:
 required: true
 type: string
 description: Hostname of the Service Host on which the Service
Function should be provisioned.
 state:
 required: true
 type: string
 description: The state for the SFE(s)
 valid_values: ["non-placed", "placed", "booted", "connected"]
 instances:
 required: true
 description: The number of SFEs in this particular state on the Service
Host

2.3 Virtual Application Orchestration

Application Orchestration layer is empowered by the Vertical Application Orchestrator

(VAO) builds atop well-established container and Infrastructure as a Service (IaaS) cloud

platforms to provide automated service deployment, LCM, and scaling while dynamically

exploiting the underlying provided services for optimising application performance. It also

aims to help the vertical customers, by creating a development environment where

services can be easily prototyped and quickly deployed into production. In that concept it

allows verticals to compose applications following a conventional microservices-based

approach where each component can be independently orchestrated.

Application developers who have already made the effort to disaggregate their applications

into multiple independent components/microservices can readily register those

components to the VAO UI by providing an application registry Uniform Resource Locator

(URL) (e.g., docker registry). Apart from the components themselves,

 Page 20 of 41

D2.5 Technology Components and Platform

vertical service providers/developers can also express dependencies between

components, thus forming a DAG with application components as vertices and their

dependencies as edges. In the case of monolithic (i.e., single-component) applications the

application graph takes its simplest form, i.e., one vertex without edges. Once all

application components are registered with the VAO, the UI visualises an application graph

with all of its components and links.

Figure 4 visualizes the steps taken by the VAO and its internal components to perform UI-

driven application composition and application policy definition. As it can be seen, first

comes the registration of each application component through a UI panel. Then, the panel

offers a wizard which allows to drag and drop application components and draw links

between them. Once the graph is composed, the vertical application provider declares

constraints and SLAs regarding the deployment of the graph. The process is thoroughly

described in the following sections.

2.3.1 Registration and Composition of an Application

The actions for integrating and onboarding the vertical applications inside the VAO

Platform is highlighted in the next diagram.

Figure 4: Registration of an application diagram

 Page 21 of 41

D2.5 Technology Components and Platform

An application may comprise of one or more application components. Each app component

is a standalone entity that executes part of the application logic. App components are

organized as a direct acyclic graph. Dependencies/Connections between app components

are edges. Application providers may choose which app components will be accessible by

users.

For starters the technical integration with the VAO is to bring the different components to

be deployed and communicate using dedicated interfaces or a common message broker in

case this is needed.

VAO requires as input containers and operates on top of cloud technologies like Kubernetes

and OpenStack. This way provides a layer of abstraction to the vertical customers to

construct their service excluding technology-specific details.

A proper format for declaring all these information with regards to vertical applications are

through the VAO-GUI which provides a stepwise service construction approach while it is

also compatible with Docker-Compose format.

2.3.1.1 Web Platform

On the web platform, role-based access control features are enabling specific users to use

specific features and specific views of the web platform.

Figure 5: Roles and Logging into the web platform

2.3.1.2 Registration of Individual Application Components

To onboard an application, the VAO offers a UI. For the creation of the application

components, we need first to fill the following forms with the corresponding values. This

type of information can be found in the application’s docker-compose or helm charts

descriptor (if such descriptors exist) that the user may have. What must be thought very

 Page 22 of 41

D2.5 Technology Components and Platform

thoroughly before starting the onboarding of the microservices, is the order that the

components will be created. That can be achieved by creating the acyclic graph of the

application, where each link between two microservices represents the dependency that

they have. So, for instance if our application consists from a MySQL and a PhpMyAdmin

microservices, in our acyclic graph it will be one link that will go from the PhpMyAdmin to

the MySQL and it will represent that the first needs the second in order to start and work

properly, so in that case we should create first the MySQL component and then the

PhpMyAdmin in order to be capable to refer to the dependency of the MySQL component

during the creation of the PhpMyAdmin component. After the order has been concluded,

the onboarding of microservices as components to the platform can be started by filling

the following forms:

Figure 6: Application’s Component Details

 Page 23 of 41

D2.5 Technology Components and Platform

Figure 7: Application Component Environment Variables Declaration

Figure 8: Components Registration

On the figure above we can find all the required basic configurations to create a

component, like the docker image and registry of it, the minimum execution requirements

that the container needs as also the health check exposed to find out if the microservice is

running properly. The user can configure the environmental variables, the exposed ports

as exposed interfaces, the dependencies on another microservices as required interfaces,

the volumes, etc.

Specific reference should be made on the graph link constraints that Figure 8 shows. Such

specifications targets to the requirements that must be satisfied regarding the quality of

the virtual link which is established between two components. During the deployment of

an application component all interfaces that it exposes are bound to network identifiers

that are indicated by the infrastructure provider. Through this configuration, the

 Page 24 of 41

D2.5 Technology Components and Platform

materialized link between components must satisfy some network requirements in terms

of delay, jitter, packet loss and throughput. At this point, it should be clarified that a

component that participates in a service mesh may expose two types of interfaces. The first

type is the CORE and the other is the ACCESS type. CORE interfaces are the ones that are

used among the components while ACCESS interfaces are the ones that interact with the

UEs. It should be clear that Graph Link constraints refer to the interconnection of CORE

interfaces only. On the other hand, ACCESS interfaces entail a completely different

metamodel. ACCESS interfaces are like a label for an application component to require a

deployment with a network attached to radio equipment. Specifically, the type of

constraints that can be provided relate to latency, bandwidth, the QoS Class Identifier

(a.k.a. QCI) like in Figure 8.

2.3.1.3 Compose and Register Application Graph

After the application component registration ends, VAO provides a view to select and link

all the necessary application components that constitutes the application graph. The image

below demonstrates how the application graph can be created. The Application Provider

can just search for any component needed to add to application graph and then just link

the components by grabbing the spheres around the components and dropping it on the

component you want to be linked.

Figure 9: Application graph creation

Pre-deployment Application Constraints

After the composition of the application graph VAO provides a set of user interfaces

supporting the declaration of a set of resource and high-level network constraints that have

to be fulfilled during the placement of the application in order to provide the desired

 Page 25 of 41

D2.5 Technology Components and Platform

network functionalities. The figures below illustrate these user interfaces for providing

resource and high-level network constraints.

Figure 10: Deployment Constraints (VIM related)

Figure 11: Deployment Constraints (resources)

2.3.2 Application Deployment

Given that all the previous steps are successfully completed by the end user the actual

deployment of the application will take place. The following picture depicts the successful

deployment of an application on top of the programmable resources. Logging information

is provided with details regarding the status of the application graph, along with some basic

monitoring metrics per application component.

 Page 26 of 41

D2.5 Technology Components and Platform

Figure 12: Graphical Representation of a Deployed Vertical Application.

Figure 13: Monitoring/Debugging Information of a Deployed Vertical Application.

 Page 27 of 41

D2.5 Technology Components and Platform

2.3.3 Runtime Policies

The Policies Manager provides policies enforcement over the deployed application graphs

following a continuous match-resolve-act approach. Specifically, the match phase regards

the mapping of the set of applied rules that are satisfied based on alerts coming from the

monitoring infrastructure. The resolve phase regards the process of conflict resolution for

different rules that may be valid and triggered at the same time. Thus, the resolve phase

aims at resolution among these rules taking into account the pre-defined priority of each

rule. The act phase regards the provision of a set of suggested actions by the policy manager

to the orchestration components, the Deployment Manager and the Execution Manager of

the VAO, responsible for application graphs placement and management, respectively.

Figure 14: Runtime Policies Activation

Policies enforcement is realized through a rule-based framework that attempts to derive

execution instructions based on the current set of data and the active rules; rules

associated with the deployed application graphs at each point of time. Specifically, we have

 Page 28 of 41

D2.5 Technology Components and Platform

adopted Drools rules-based management system [Drools], an open-source solution that

supports the implementation of runtime policies enforcement mechanisms.

Policy Editor uses Drools under the hood. In order to overcome the cumbersome

specificities of the system, a user-friendly way for the declaration of runtime policies was

implemented. The policies regard elasticity and security management policies.

The Declaration of a policy is done through the UI (Figure 15) and a set of validation

mechanisms on the backend, multiple rule-based expressions can be declared following a

condition, event, action approach (upon specific conditions, identification of events that

lead to actions). The user interface is developed with REACT.JS, while the validation

mechanisms are based on the design and development of mechanisms (based on Java) for

translating the declared rules to Drools.

Figure 15: User Interface for the Policies Definition.

To Declare a Policy an application must be alive (i.e successfully deployed and running). The

Monitoring metrics must be present inside Prometheus. After that through the GUI the

composition of the policy targets a specific metric of a specific application component (or

a combination of two or more metrics).

The actions that are for the moment supported are:

• scaling actions

• scale in

• scale out

• security actions

• block traffic

• Forensic

 Page 29 of 41

D2.5 Technology Components and Platform

3 System Integration
This section describes the efforts in WP2 to integrate all platform components into the

integration testbed and onboard Enterprise Services. While providing a detailed description

of the infrastructure and platform layer, this section offers technical insights and challenges

into the cloud-native orchestration of Enterprise Services into a platform which implements

a Service-Based Architecture.

3.1 Testbed Infrastructure

The testbed is composed of a range of components that reside in the infrastructure layer

of the FUDGE-5G system, as described in D1.3 [FUD13]. This includes the Radio Access

Network (RAN), the compute hosts for the platform and the switching fabric which

interconnects the RAN and compute infrastructure.

The RAN in the testbed is an Amarisoft Callbox Mini [AMA22] which offers 2x2 MIMO. It

can operate in the FR1 and FR2 spectrum, and allows to run in 5G SA mode with the 5G

Core fully externalised. During the course of the FUDGE-5G project, the base station

received software updates to support 3GPP’s Rel. 16 specification. The spectrum at the

testbed location (i.e. London) was allocated by the UK authority Ofcom and is a shared

licence for the C-Band n79 at 40MHz channel bandwidth.

The modems available for testing were:

• Waveshare [WSH22] operating via GPIOs over a Raspberry Pi 4 and is based on

Qualcomm’s Snapdragon X55. The modem comes with external antenna ports

allowing better antenna positioning for MIMO. This modem implements Rel. 15

• Quectel development kit [QUE22] operating as an USB device and comes with

integrated antennas. It also uses Qualcomm’s Snapdragon X55 but comes with their

own modem manager QMI. This modem implements Rel. 15.

• Fivecomm’s modem [FIV22] also operating via GPIOs of a Raspberry Pi using Quectel’s

module. This modem implements Rel. 15.

The compute infrastructure is based on a range of HP rack and Dell Precise Tower desktop

machines with different CPU, RAM and storage configurations. These compute hosts are

managed by an OpenStack NFV framework offering the orchestration of platform

components as Virtual Machines (VMs) in an automated manner. Also, towards the edge

of the infrastructure, Intel NUCs were used to reduce the form factor, without significantly

compromising on performance or compute capabilities.

The switching fabric is based on Pica8 [PIC22] hardware SDN switches offering 48 1G

ethernet and four 10G SFP ports. Each switch supports standard L2/L3 packet forwarding

 Page 30 of 41

D2.5 Technology Components and Platform

capabilities (i.e. managed switch), OpenFlow-based operations and Pica8’s owned

CrossFlow support (operating switch in both modes).

Figure 16 depicts the infrastructure with OpenStack-managed compute hosts starting with

“os-*” and the Intel NUCs at the bottom of the figure as “nuc*”. The gNB is illustrated at

the bottom left as “amarisoft”. As illustrated, all compute hosts are interconnected via

three SDN switches “Pica8-*” forming a 10G triangle core connection and 1G branches.

Figure 16: Infrastructure of FUDGE-5G's Integration Testbed

The properties of all compute hosts are listed in the table below.

Table 2: Properties of Infrastructure Compute Hosts.

Compute Host vCPUs Memory [GB] Storage [GB]

os-data-centre-1 40 32 750

os-data-centre-2 40 32 750

os-edge-1 16 64 250

os-edge-2 16 64 250

os-edge-3 16 64 250

nuc8hn-26t 8 24 220

nuv5sd-12t 8 24 220

3.2 Testbed Platform

As described in [FUD13], the platform is composed of the functionalities routing,

orchestration and telemetry. The respective technologies implementing these

 Page 31 of 41

D2.5 Technology Components and Platform

functionalities are deployed as VMs and Linux Containers (LXCs) via OpenStack and by

hand, respectively. The deployment and logical interconnection among VM/LXC instances

are illustrated in Figure 17. Colour coding is leveraged to illustrate which instance

implements which of the three platform functionalities.

Note, the orchestration of Enterprise Services is split between the Service Function

Virtualisation Orchestrator (SFVO) and Vertical Application Orchestrator (VAO). The VAO is

colour coded in pine green and located in the os-data-centre-1 compute host. It manages

the DN instance at the boom right, where vertical applications are orchestrated and

reachable over the 5G user plane.

Meanwhile, the SFVO offers orchestration of 5GC NFs into SHs, colour coded as cyan. The

SFVO components SCC, SFEC and SFPR are located in the os-data-centre-1 compute host

with several SHs spread across the infrastructure, labelled as “*-sh”.

The Service Communication Proxy (SCP) resides with an “*-sp” instance at each compute

host where an SH has been instantiated. At the bottom of the figure, the gNB has dedicated

links for N2 and N3 traffic into the SCP (fe1-sp) and SH (fe1-sh), respectively. Lastly, the

“sia-vpn” instance on the top of Figure 17 offers VPN access to all platform APIs for

Enterprise Service vendors to orchestrate and monitor their applications. The offered APIs

are the ones described in Section 2 of this document.

Figure 17: FUDGE-5G Platform of Integration Testbed

 Page 32 of 41

D2.5 Technology Components and Platform

3.3 5G Core Integration Challenges and Experiences

FUDGE-5G aimed to put various 5G technologies under trial in a private network setting,

aiming at demonstrating 5G’s customisation potential. One of the key propositions of 5G is

the ability of the Core Network to be much more flexible regarding cloud-native

provisioning, multi-vendor deployment and scalability. This sub-section focuses on the

experiences of 5G Core Networks orchestration via the SFVO in the integration testbed.

The platform’s SFV Orchestrator offers a simplified descriptor definition compared to

TOSCA or HOTs. The SFVO departs from traditional NFV descriptor information where

networking declarations is an integral part of a cloud-centric definition changing the focus

point of connectivity to the FQDN of an instance only. This has the benefit to externalise

the networking (aka service routing) entirely from the service and the infrastructure.

Furthermore, location-aware and cloud-native procedures to provision and life-cycle

manage software packaged as Linux or Docker containers or Kernel Virtual Machines (KVM)

are introduced in the SFVO descriptor. As described in further detail in Section 2.2.5, the

SFVO’s resource descriptor defines which NF should be deployed into which location with

information attached about compute, memory and storage requirements only. The

challenges of orchestrating 5GCs in a cloud-native fashion are described hereafter.

FUDGE-5G’s SBA platform comes with a Service Communication Proxy which offers service

routing capabilities for HTTP-based traffic. However, in order to utilise this feature Network

Functions must implement the usage of Fully Qualified Domain Names (FQDNs) and

therefore the support for Domain Name Service (DNS). Furthermore, service routing can

be performed only when more than one instance of the same Network Function is deployed

so that the SCP can choose the most appropriate one to serve a HTTP request (e.g. based

on shortest path routing). But while the latter one would require the implementation of a

Network Function using modern 12-factor app methodologies, none of the

implementations available to the project implemented such Network Function.

Furthermore, the usage of FQDNs was also a rather scarcely implemented functionality

with many NFs utilising IP addresses directly as the Host identifier. D2.4 [FUD24] addressed

this by studying the design requirements on how to develop cloud-native NFs.

In FUDGE-5G, the proposition of the SFVO is that all Network Functions are fully pre-

packaged and can be freely deployed without any further configuration, fully decoupling

the internals of a Network Function from the cloud-native orchestration procedures.

However, when using Docker, it is often considered to build and deploy the software that

implements a Network Function at the time of creating the container. Thus, post-

provisioning configurations are realised using cloud-init or Docker Compose, which is not

implemented in the SFVO. Also, outside of FUDGE-5G, all 5GC vendors have their own

choice of deployment framework in the likes of Ansible or Chef in addition to integrated

Gitlab pipelines for conformance testing before releasing software. The integration of the

 Page 33 of 41

D2.5 Technology Components and Platform

SFVO into the various frameworks was not pursued aiming to decouple these processes to

minimise the development effort required on top of implementing features within Network

Functions.

Once all NFs bootstrap, some implementations have dependencies on other NFs in order

to instantiate correctly. Often, this refers to databases or even the NRF as the first point of

registration of an NF. The SFVO however does not have the ability to understand what is

running inside a Service Function, as its focus point is on instantiating the SF via the correct

instance manager (Docker. LXD, KVM). Also, even though an instance is started successfully,

the SFVO has no knowledge about what is running inside the SF and how long it takes for

the software inside the SF to bootstrap. Thus, the SFVO offers a script as part of the

packaging environment which allows to provide a set of FQDN, transport protocol and port

tuples. The script is executed after networking in the SFE becomes available and tries to

establish a TCP or UDP connection to the FQDN and port provided as an argument. Only

until all endpoints are reachable the script exits, allowing SF software to bootstrap and have

one SFE available to complete the bootstrapping successfully.

Further to the dependency on other SFs being operational already, some NFs are

implemented to only listen on the IP address their local interface have for security

purposes and/or to register with this IP directly with the NRF (bypassing the use of FQDNs

entirely). This information is often pre-configured through an external deployment chain,

e.g. ansible or puppet. As IP addresses are assigned through DHCP and each deployment in

a different infrastructure might have different IP ranges, the SFVO does not offer the ability

to statically assign an IP address prior to the orchestration of a NF. Again, mainly driven by

the assumption to be network agnostic, as the orchestration should be fully automated and

agnostic to the underlying infrastructure – aka cloud-native.

Similar to the above, some FQDN-based NF implementations require their own FQDN to

be resolvable at bootstrapping time to bind to the correct IP address. This logic causes two

rather significant challenges:

• When provisioning the NF, the SFVO first creates the instance, boots it and then

connects it to the routing layer. As BOOT and CONNECT are distinct operations in the

SFVO and SCP, there is a likelihood that the CONNECT state is reached after the

bootstrapping started. The ability to separate BOOT and CONNECT is driven by the

design ambition allowing NFs to bootstrap entirely and be ready to be connected

without any delay to scale an NF service as fast as possible.

• Related to the above, if the state of an NF is set to BOOT only at provisioning time,

the NF would fail to bootstrap properly. If the decision to set the NF instance to

CONNECT, the SCP assumes the NF service is reachable. If this NF instance is the first

one to come up when being set to BOOT, there is other NF instance already registered

under this FQDN, allowing the booted NF to resolve its FQDN (note, all NF instances

 Page 34 of 41

D2.5 Technology Components and Platform

would have the same FQDN, allowing the SCP to pick the most suitable instance to

serve a HTTP request).

The above challenges and experiences have been mainly around the design choices of how

NFs are implemented regarding how flexible they are to be deployed anywhere at any time

without any external dependencies. One of the most challenging NF to be integrated into

the cloud-native workflow of the SFVO are UPFs. The reason for that is the nature of UPFs

to switch/route packets on the User Plane in comparison to other NFs that are

implementing pure application layer logic accessible via RESTful APIs. During the project, it

has become apparent that UPFs cannot be agnostic to the underlying network and might

even require dedicated networks exposed directly to the software implementing the UPF

logic. Thus, the SFVO has received updates in its resource descriptor allowing to specify

which network types must be present for SFs that represent a UPF (see Section 2.2.5 for

more details). The SFVO then is aware which network available on a Service Host is offering

N3, N4, N6 or N9 functionality.

On top of this network abstraction, it has been still rather challenging to move away from

NFV principles, as UPFs are implemented using severely different routing approaches and

therefore it became a requirement for the SFVO to still expose networks to Service

Functions (aka Network Functions).

The example given in Figure 18 illustrates a UPF that operates N3 and N6 in two different

IP networks in order to have full control over the flows between UEs and DNs via the same

PLMN. Each UE is configured with a different APN, i.e. hospital, i-npn and industry. Each DN

is operating in a dedicated 192.168.1x.0/24 IP subnet where UEs and UPF establish PDU

sessions over the GTP-U tunnel on 192.168.82.0/24 (N3/orange colour code in the figure).

Each DN then is mapped to a UE subnet matching in the Class C value of the IP address, i.e.

10 for hospital, 11 for i-npn and 12 for industry.

 Page 35 of 41

D2.5 Technology Components and Platform

Figure 18: IP Routing Configuration of User Plane

The challenges with the SFVO orchestration procedures is that the platform (SCP) and

infrastructure (gNB/DN) must be fully aligned with the IP subnet configuration inside the

UPF. While platform and infrastructure are following NFV principles where infrastructure

information around subnets and network names are communicated outside of an NFVO

(such as OpenStack), the SFVO did not offer any form of network awareness to SFs such as

the UPF. As a result, the SFVO received the ability to define what network types are

available on a Service Host, e.g. N3, N4 and N6. This allows the SFVO to expose the networks

available on a Service Host to Enterprise Service vendors to agnostically write the resource

descriptor correctly (which SF goes onto which Service Host). Furthermore, it allows the

SFVO to guarantee the requested networks are available.

However, one challenge could not be addressed in a cloud-native fashion, i.e. the network-

agnostic provisioning of UPFs. The UPF in the example above assumes N3 and N4 on the

same interface and in the same subnet. For that reason, the Linux bridge br0 on the Service

Host fe1-sh combines the N3 and N4 interface and leaves it to amarisoft and scp node to

drop or accept packets in the correct subnet they serve.

What could be addressed successfully in the SFVO though was the requirement to have

specific kernel modules and libraries installed, loaded and exposed to Linux and Docker

containers. The resource descriptor allows to specify the exact Linux package name and

version that must be installed (see Section 2.2.5).

 Page 36 of 41

D2.5 Technology Components and Platform

In summary, all non-UPF challenges with 5GCs available to the project were merely

software design patterns related and rather straight forward addressed by the developers

of the 5GCs and SFVO. However, the abstraction of platform networks on the Service Host

towards UPFs could not be fully automated if UPFs require specific number of interfaces

for N3, N4, N6 and N9.

3.4 5G Multicast Broadcast

5G Multicast Broadcast or 5MBS has finished standardization in 3GPP, marked by the

closure of the associated Work item in June 2022 and validated during the SA#96 plenary.

However, even if the technology is standardized, it is up for manufacturer implementation

to support this solution in commercial equipment. To bridge the gap, UPV has developed a

5MBS software prototype which provides E2E multicast capabilities over FOKUS

Open5GCore, as it has been reported in FUDGE-5G D2.3 [FUD23].

The design followed in the 5MBS prototype is an extension of the existing Network

Functions provided by FOKUS Open5GCore. In detail, the MB-UPF has been implemented

by adding new functionality to the UPF, essentially creating a collocated MB-UPF/UPF with

both multicast and unicast routing capabilities. In the same vein, the MB-SMF is an

extension of the SMF and handles both multicast and unicast sessions. To validate the

multicast capabilities of the prototype, the Benchmarking tool included in Open5GCore is

used, where the software provides virtual gNBs and UEs, represented as Linux terminals,

which emulate real users and can send commands to the internet. In this regard, the 5MBS

prototype has experienced a breakthrough in the implementations thanks to a close

collaboration between FOKUS and UPV. The earlier versions, deployed over Open5GCore

Release 6, relied on an IGMP endpoint between the MB-UPF and the gNBs, as shown in

Figure 19. The role of the endpoint is to modify the upcoming downlink multicast flow from

the N3mb interface into a unicast so the virtualized gNBs can forward data accordingly to

the emulated UEs. This introduces a limitation where only one UE could be connected to a

gNB as the gNB was not able to discern which UE to forward the multicast-converted

packets.

 Page 37 of 41

D2.5 Technology Components and Platform

Figure 19: Open5GCore Release 6 5MBS implementation by UPV. An IGMP endpoint is deployed for every virtual gNB
instanced for the experiment, which will translate the multicast IP from a multicast flow into a unicast one.

The prototype was migrated to Open5GCore Release 7. The most relevant breakthrough in

this regard is the update to the Benchmarking Tool where the virtualized gNB now natively

include the possibility of accepting and forwarding multicast flows to the emulated UEs

under it.

The current deployed version in UPV premises uses this version, which is deployed

following the architecture below:

Figure 20: Deployment architecture of the UPV node, showcasing the 5MBS prototype.

An initial validation test has been carried out to evaluate a possible performance

degradation of the multicast flows inside the modified Open5GCore against a unicast

transmission to the UEs. To do so, a batch of experiments using the iperf bandwidth test

tool between a Network Host and a virtualized UEs has been done. The setup process is like

the one presented in D2.3, which the main difference being that there is no need to launch

the IGMP endpoint. The Network Host launches the iperf server and delivers data over

N6mb to the MB-UPF, which will deliver the data to the gNB. The gNB will forward this data

to the UE. This

 Page 38 of 41

D2.5 Technology Components and Platform

test was done for a range of bandwidths, both using unicast and multicast delivery. The

parameters of the test and the VM running the prototype are described in Table 3.

Table 3: Parameters used for the 5MBS prototype validation.

Parameter Value Description

Nº of Processors 4 Number of processors allocated to the VM

Processor Speed 2.1 GHz Speed of the processors allocated to the VM

RAM 4 Gb Amount of memory allocated to the VM

Disk SSD Type of storage used in the VM

Tested Bandwidth
1,2,5,10,15,20,35,50
Mbit/s

Bandwidth parameter specified in iperf for
the test

Type of Traffic UDP UDP is mandatory in iperf for multicast traffic

The executed commands are detailed next. The parameter in red is what is variable from

test to test. The unicast commands are as follows:

On the UE: iperf -s -u -i 1
On the Network Host: iperf -c 192.168.6.2 -u -T 32 -t 300 -i 1 -l 100 -b 20M

In the case of multicast, the commands are:

On the UE: iperf -s -u -B 239.0.0.6 -i 1
On the AF/IGW: iperf -c 239.0.0.6 -u -T 32 -t 300 -i 1 -l 100 -b 20M

The parameters evaluated were % of lost packets and datagram reordering. Note that

datagram reordering is not inherently a negative KPI. The UDP datagrams could be

reordered depending on the amount of threading and core affinity of the different parts of

the Open5GCore. The results of the test are shown below:

 Page 39 of 41

D2.5 Technology Components and Platform

Table 4:Results obtained from the iperf testing over unicast and multicast scenarios.

From the results it can be obtained that the 5MBS prototype and the Open5GCore in UPV

premises can send without errors up to 35 Mbit/s, where some datagrams will start to get

lost. The number of lost packets in this bandwidth range is similar both for unicast and

multicast. However, as the data rate raises, this number increases for both transmission

modes, reaching 22% in multicast and 14% in unicast. It can be derived that the

implementation of the 5MBS technology introduces a performance degradation of the

overall capabilities of Open5GCore when a bandwidth of 50 Mbit/s or more is used.

 Page 40 of 41

D2.5 Technology Components and Platform

4 Conclusions
This last section marks the end of D2.5 and WP2 in FUDGE-5G. D2.5 provided the list of

platform APIs allowing Enterprise Service providers to orchestrate their software in a cloud-

native fashion. D2.5 also provided a comprehensive description of the integration testbed

used to incorporate all platform components. Along with the compute capabilities of the

testbed, D2.5 discussed the challenges and experiences of orchestrating various 5G Cores

available to the project.

The technologies developed and integrated in WP2 were handed over to WP3 for

integration across all five use cases.

 Page 41 of 41

D2.5 Technology Components and Platform

References
[AMA22] Amarisoft SAS, “Callbox Series”, Online:

https://www.amarisoft.com/products/test-measurements/amari-lte-
callbox/

[FUD11] FUDGE-5G Consortium, “D1.1: Technical Blueprint for Vertical Use Cases and
Validation Framework“, 2021. Online: https://www.fudge-5g.eu/download-
file/493/zIrbJ2b9meNEGKKXwkEV

[FUD13] FUDGE-5G Consortium, “D1.3: FUDGE-5G Platform Architecture Final
Release”, 2022. Online: https://www.fudge-5g.eu/download-
file/543/iYIVtTS3SKWmXm6QfdQp

[FIV22] Fivecomm, “5G BROAD”, Online: https://fivecomm.eu/fivecomm-5g-devices/
[FUD23] FUDGE-5G Consortium, “D2.3: Converged 5GLAN with TSN and Multicast

Capabilities”, Online: https://www.fudge-5g.eu/download-
file/546/1bAeN0CztfGCoRpgNGtS

[FUD24] FUDGE-5G Consortium, “D2.4: Disintegrated Network Functions for Cloud-
native Service Orchestration”, Online: https://www.fudge-5g.eu/download-
file/547/bujMxEwFz4V55VwvJG2H

[GLT25] FUDGE-5G Gitlab, “T2.5 – Testbed Integration”, Online: https://gitlab.fudge-
5g.eu/wp2/t2.5-testbed-integration

[OFC22] Ofcom, “”, Online: https://www.ofcom.org.uk
[PIC22] Pica8, “P3297”, Online: https://www.pica8.com/white-box-switch/
[QUE22] Quectel, “RMU500EK 5G Development-Kit”, Online:

https://www.tekmodul.de/produkt/5g-modul-quectel-rm500q-gl/
[WSH22] Waveshare, “SIM8200EA-M2 5G HAT”, Online:

https://www.waveshare.com/wiki/SIM8200EA-M2_5G_HAT
[YTSFV] Sebastian Robitzsch, “Service Function Virtualisation – Demonstration of

InterDigital’s SBA Orchestration Capabilities for 5G Core Vendors”, 2022.
Online: https://youtu.be/2ybJp8Ff3uM

https://www.amarisoft.com/products/test-measurements/amari-lte-callbox/
https://www.amarisoft.com/products/test-measurements/amari-lte-callbox/
https://www.fudge-5g.eu/download-file/493/zIrbJ2b9meNEGKKXwkEV
https://www.fudge-5g.eu/download-file/493/zIrbJ2b9meNEGKKXwkEV
https://www.fudge-5g.eu/download-file/543/iYIVtTS3SKWmXm6QfdQp
https://www.fudge-5g.eu/download-file/543/iYIVtTS3SKWmXm6QfdQp
https://fivecomm.eu/fivecomm-5g-devices/
https://www.fudge-5g.eu/download-file/546/1bAeN0CztfGCoRpgNGtS
https://www.fudge-5g.eu/download-file/546/1bAeN0CztfGCoRpgNGtS
https://www.fudge-5g.eu/download-file/547/bujMxEwFz4V55VwvJG2H
https://www.fudge-5g.eu/download-file/547/bujMxEwFz4V55VwvJG2H
https://gitlab.fudge-5g.eu/wp2/t2.5-testbed-integration
https://gitlab.fudge-5g.eu/wp2/t2.5-testbed-integration
https://www.ofcom.org.uk/
https://www.pica8.com/white-box-switch/
https://www.tekmodul.de/produkt/5g-modul-quectel-rm500q-gl/
https://www.waveshare.com/wiki/SIM8200EA-M2_5G_HAT
https://youtu.be/2ybJp8Ff3uM

