
 
This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 957242 

 

 

 

 

 

 

 

 

Deliverable D2.4 

FUDGE-5G Disintegrated Network 

Functions for Cloud-native 

Orchestration 

Version 1.0 

Work Package 2 

 
Main authors Marco Centenaro and Nicola di Pietro (ATH) 

Distribution PU 

Delivery date July 2022 

Delivered date  

© FUDGE-5G project consortium partners 

 

 
Partners 

Ref. Ares(2022)5488298 - 31/07/2022



 

 Page 2 of 53 D2.1 FUDGE-5G Technology Components and Platform 

Disclaimer 

This document contains material that is copyright of certain FUDGE-5G consortium partners 

and may not be reproduced or copied without permission. The content of this document is 

owned by the FUDGE-5G project consortium. The commercial use of any information 

contained in this document may require a license from the proprietor of that information. 

The FUDGE-5G project consortium does not accept any responsibility or liability for any use 

made of the information provided on this document. 

All FUDGE-5G partners have agreed to the full publication of this document. 

Project details 

Project title: FUlly DisinteGrated private nEtworks for 5G verticals 
Acronym:  FUDGE-5G 
Start date:  September 2020 
Duration:  30 months 
Call:   ICT-42-2020 Innovation Action 

For more information 

Project Coordinator 
Prof. David Gomez-Barquero 
Universitat Politecnica de Valencia 
iTEAM Research Institute 
Camino de Vera s/n 
46022 Valencia 
Spain 
 
http://fudge-5g.eu  
info@fudge-5g.eu  

Acknowledgement 

FUDGE-5G has received funding from the European Union’s Horizon 2020 research and 

innovation programme under grant agreement Nº 957242. The European Union has no 

responsibility for the content of this document. 

 

 

 

 

http://fudge-5g.eu/
mailto:info@fudge-5g.eu


 

 Page 3 of 53 D2.1 FUDGE-5G Technology Components and Platform 

Abstract 

Cloud-native orchestration of network services, together with a microservice-based 

approach to developing network functions, are central features of the service deployment 

framework and architectural vision proposed by FUDGE-5G. This deliverable reports on the 

activities on these subjects carried out within tasks T2.3 (Cloud-native Service 

Orchestration) and T2.4 (Disintegration of Network Functions as Microservices) of the 

project’s second work package. This work contributes to bridging the worlds of information 

technology and mobile communication networks, adapting to the latter some frameworks 

for advanced service and functionality development that come from the former (e.g., cloud-

native functions and microservices). In this document, we delineate FUDGE-5G’s design and 

development approach to a cloud-native orchestration of Enterprise Services, describing 

the features and requirements that characterize cloud-native “orchestrable” software 

components. Then, within the framework of cloud-native services and functions, we move 

to analysing how 5G core network functions can be designed and developed as 

microservices. This requires several steps beyond the state of the art because a mapping 

between the sub-functionalities of 5G core network functions and their possible 

restructuring into a microservices-based architecture is not given by the standard. This work 

re-elaborates certain 5G architectural elements and introduces paradigms that fit within 

the enhanced service-based architecture proposed by FUDGE-5G. 

  



 

 Page 4 of 53 D2.1 FUDGE-5G Technology Components and Platform 

Versioning and Contribution History 

# Description Contributors 

0.1 Initial table of contents ATH 

0.2 Main contributions to Section 1 and 3 ATH, IDE, ONE, 
O2M 

0.3 Main contributions to Section 2 and further contributions 
to Section 3 

O2M, UBI 

0.4 Further contributions to Section 2 and 3 O2M, CMC, IDE, 
UBI, ONE 

0.5 Final contributions to all sections, editing, and completion 
of the draft sent to external reviews 

ALL 

0.6 This version includes one external reviewer’s comments  

0.7 Improvements after review of Section 2 and 3 O2M, UBI, ATH 

0.8 Further improvements of Section 2 and inclusion of the 
second reviewer’s comments 

ATH, UBI 

0.9 Final contributions and modifications ATH, ONE, IDE 

1.0 Submitted version ATH 

 

Contributors 

Partner Authors  

CMC Mika Skarp, Jose Costa-Requena 

IDE Sebastian Robitzsch, Chathura Sarathchandra, Morteza Kheirkhah 

O2M Peter Sanders 

ATH Marco Centenaro, Nicola di Pietro, Daniele Munaretto, Arif Ishaq 

ONE Luís Cordeiro, André Gomes, João Fernandes 

UPV Borja Iñesta, Josep Ribes, Carlos Barjau, David Gómez-Barquero 

FHG Pousali Chakraborty, Marius-Iulian Corici 

UBI Thanos Xirofotos, Dimitrios Klonidis 

HWDU Zoran Despotovic 



 

 Page 5 of 53 D2.1 FUDGE-5G Technology Components and Platform 

Reviewers 

Reviewers  Affiliation 

Prof. Fabrizio Granelli University of Trento, Trento, Italy 

Prof. Rui Aguiar Instituto de Telecomunicações, Aveiro, Portugal 

 

Abbreviations 

2G 2nd Generation of mobile networks 
3G 3rd Generation of mobile networks 
3GPP 3rd Generation Partnership Project 
4G 4th Generation of mobile networks 
5G-AKA 5G Authentication and Key Agreement 
5G 5th Generation of mobile networks 
5GC 5G Core network 
5QI 5G QoS Identifier 
6G 6th Generation of mobile networks 
AF Application Function 
AKA Authentication and Key Agreement 
AMBR Aggregate Maximum Bit Rate 
AMF Access and mobility Management Function 
ATH Athonet (partner of FUDGE-5G) 
API Application Programming Interface 
ARP Allocation and Retention Priority 
BDTP Background Data Transfer Policy 
BSF Binding Support Function 
BSS Business Support System 
CAP Common Alerting Protocol 
CB Cell Broadcast 
CBCF Cell Broadcast Control Function 
CBE Cell Broadcast Entity 
CHF Charging Function 
CMC Cumucore (partner of FUDGE-5G) 
CNCF Cloud Native Computing Foundation 
CRUD Create, Read, Update, Delete 
DMZ De-Militarized Zone 
DN Data Network 
DNS Domain Name System 
EAP-AKA’ Extensible Authentication Protocol AKA’ 
ETSI European Telecommunications Standards Institute 
FHG Fraunhofer FOKUS (partner of FUDGE-5G) 



 

 Page 6 of 53 D2.1 FUDGE-5G Technology Components and Platform 

FQDN Fully Qualified Domain Name 
GBR Guaranteed Bit Rate 
gNB gNodeB (5G base station) 
GPU Graphics Processing Unit 
HTTP Hypertext Transfer Protocol 
HWDU Huawei 
IDE InterDigital Europe (partner of FUDGE-5G) 
IP Internet Protocol 
IP-CAN IP-Connectivity Access Network 
IT Information Technology 
JSON JavaScript Object Notation 
MANO Management And Orchestration 
MBR Maximum Bit Rate 
MOI Managed Object Instance 
NBIFOM Network-Based IP Flow Mobility 
NBR Name-Based Routing 
NEF Network Exposure Function 
NF Network Function 
NFMF Network Function Management Function 
NFVI Network Function Virtualization Infrastructure 
NGMN Next Generation Mobile Network 
NIDD Non-IP Data Delivery 
NMS Network Management System 
NPN Non-Public Network 
NRF Network Repository Function 
NS Network Service 
NSD Network Service Descriptor 
NSS Network Slice Subnet 
NSSMF Network Slice Subnet Management Function 
O2M One2many (partner of FUDGE-5G) 
OAI OpenAirInterface 
OAM Operation, Administration, and Maintenance 
ONE OneSource (partner of FUDGE-5G) 
OS Operative System 
OSM Open-Source MANO 
OSS Operations Support System 
PCC Policy and Charging Control 
PCE Path Computation Element 
PCF Policy Control Function 
PCRF Policy and Charging Rules Function 
PDN Packet Data Network 
PDU Protocol Data Unit 
PFCP Packet Forwarding Control Protocol 
PGW PDN Gateway 



 

 Page 7 of 53 D2.1 FUDGE-5G Technology Components and Platform 

PLMN Public Land Mobile Network 
PPDR Public Protection and Disaster Relief 
PRA Presence Reporting Area 
QCI QoS Class Identifier 
QoS Quality of Service 
RAN Radio Access Network 
R&I Research and Innovation 
RPC Remote Procedure Call 
RTT Round-Trip Time 
SA Stand-alone 
SBA Service-Based Architecture 
SBI Service-Based Interfaces 
SBMA Service-Based Management Architecture 
SCP Service Communication Proxy 
SDF Service Data Flow 
SMF Session Management Function 
SoR Steering of Roaming 
SP Service Proxy 
SPC Service Proxy Controller 
SPF Service Proxy Forwarder 
SPR Subscriber Profile Repository 
SSL Secure Sockets Layer 
TEID Tunnel Endpoint Identifier 
TLS Transport Layer Security 
UBI Ubitech (partner of FUDGE-5G) 
UDM Unified Data Management 
UDR Unified Data Repository 
UE User Equipment 
UPF User Plane Function 
UPV Universitat Politècnica de València (partner of FUDGE-5G) 
VCPU Virtual Central Processing Unit 
VF Virtualized Function 
VM Virtual Machine 
VNF Virtual Network Function 
VNFD VNF Descriptor 
VPLMN Visited PLMN 
WP Work Package 

  



 

 Page 8 of 53 D2.1 FUDGE-5G Technology Components and Platform 

Executive Summary 

FUDGE-5G’s Work Package (WP) 2 is composed of five tasks: 

• T2.1: Unified Service Based Architecture Platform. 

• T2.2: LAN in 5G Environments. 

• T2.3: Cloud Native Service Orchestration. 

• T2.4: Disintegration of Network Functions as Micro-Services. 

• T2.5: Platform Continuous Integration in a Sandbox Environment. 

This deliverable reports on activities carried out in T2.3 and T2.4. Specifically, in Section 1, 

we give an introductive overview of the concepts of cloud-native and microservices. We will 

highlight their differences and recall how they are tightly related and constitute a major 

paradigm for the implementation of modern Information Technology (IT) services. These 

concepts are enablers for FUDGE-5G’s Unified Service Based Architecture [D2.1], [D2.2]. 

Section 2 is dedicated to cloud-native service orchestration, which in FUDGE-5G is common 

for vertical applications and 5G Core (5GC) Network Functions (NFs) [D2.1]. Section 2.1 and 

Section 2.2 elaborate on the characteristics and requirements that cloud-native software 

components must have in FUDGE-5G’s view to be suitable for orchestration (or 

“orchestrable”), in the sense defined in [D1.2], [D2.1]. Further, Section 2.2 addresses the 

role of “sidecars” and proxies in cloud-native service orchestration. 

Section 3 focuses on the adoption of microservices and of microservice-based architecture 

principles in designing 5GC NFs, motivated by the possibility of developing and deploying 

core network functionalities that take full advantage of orchestrability and cloud-nativeness 

(i.e., the condition of a function or software component of being cloud-native). Section 3.1 

recalls the service-based architectural approach of 5G, whereas Section 3.2 analyses the 

criteria, advantages, and limitations of a microservice-based architectural approach in 5G. 

Further, in Section 3.2.4, we propose a possible degree of decomposition into microservices 

of some functionally heterogeneous 5GC NFs, chosen for their specific role within the 5GC 

and their importance as enablers of advanced 5G functionalities. Such work is in line with 

the architectural specifications of the 5GC [TS23.501] at an inter-NF level but goes beyond 

the state of the art in the internal design of the NFs, fostering the adoption of microservices 

in their development. Some integration testing results concerning these NFs are presented 

in Section 3.2.4, and further results will be reported in [D2.5]. 

Finally, some concluding remarks appear in Section 4.  

As opportunely pointed out in the text wherever appropriate, part of the work described in 

this document was reported in [Cen+22], [Ish+22], and [NGMN22] with explicit 

acknowledgments to the FUDGE-5G project.  



 

 Page 9 of 53 D2.1 FUDGE-5G Technology Components and Platform 

Table of Contents 

Disclaimer 2 

1 Introduction: Key Concepts, Cloud-Native, and Microservices 11 

2 Cloud-Native Service Orchestration 13 

2.1 Design and Development Approach 14 

2.2 Requirements of Service Orchestration 16 

2.2.1 Service Orchestration Primitives 16 

2.2.2 Proxies in the Service Orchestration 17 

3 Decomposition of 5G Core Network Functions 19 

3.1 Microservices and 5G Networks 19 

3.1.1 Service-Based Architecture in 5G Networks 19 

3.1.2 Service-Based Architecture and Microservices for Public and Non-Public 5G Networks

 21 

3.1.3 Security Considerations for 5G Core Networks 22 

3.2 5G Core Network Function Design Patterns 24 

3.2.1 Previous Work on Microservice Designs in 5G Core Network Functions 24 

3.2.2 General Criteria for Network Function Decomposition into Microservices 25 

3.2.3 Advantages and Limitations of a Microservice-Based 5GC 26 

3.2.4 Examples of Decomposed 5GC NFs 28 

3.3 Enhanced Service-Based Architecture in 5G and Beyond 47 

4 Conclusions 50 

5 References 51 

 

  



 

 Page 10 of 53 D2.1 FUDGE-5G Technology Components and Platform 

List of Figures 

Figure 1-1 – Difference between cloud-native functions and microservices at a glance. ... 12 

Figure 3-1 - 5G system architecture and network functions as in [TS23.501]. .................... 20 

Figure 3-2 - Procedures for encrypted modern web-based communication. ..................... 23 

Figure 3-3 - Proposed microservice-based UDM design. ..................................................... 29 

Figure 3-4 - Prototype of network slice subnet with microservice-based UDM. ................. 31 

Figure 3-5 - Proposed microservice-based NEF design. ....................................................... 32 

Figure 3-6 - CPU Usage for NEF performance tests. ............................................................. 34 

Figure 3-7 - Memory usage for NEF performance tests. ...................................................... 35 

Figure 3-8- Requests from demo AF to demo PCF (via NEF). ............................................... 36 

Figure 3-9 - Request logs from demo AF to demo PCF (via NEF). ........................................ 37 

Figure 3-10 - Proposed microservice-based CBCF design. ................................................... 38 

Figure 3-11 - Logging of CBCF-AMF interoperability test. .................................................... 40 

Figure 3-12 - Proposed microservice-based AUSF design. ................................................... 41 

Figure 3-13 - Registration, subscription and getNFInstance functions for microservices. .. 42 

Figure 3-14 - Proposed microservice-based PCF design. ..................................................... 44 

Figure 3-15 - Proposed microservice-based SMF and UPF for name-based routing 

integration on the user plane. .............................................................................................. 47 

Figure 3-16 - Beyond-release-17 system architecture. ........................................................ 48 

 

List of Tables 

Table 1 - Setup for NEF validation. ....................................................................................... 33 

Table 2 - Performance tests stages. ..................................................................................... 34 

Table 3 - Services produced by the PCF................................................................................ 43 

 



 

 Page 11 of 53 D2.1 FUDGE-5G Technology Components and Platform 

1 Introduction: Key Concepts, Cloud-

Native, and Microservices 

During the last few years, the paradigm of microservices has gained momentum in various 

IT fields, embracing a multitude of business cases and targeting plenty of heterogeneous 

application scenarios. The concept of microservices yields from the general observation that 

end-to-end digital business services and the underlying computerized functionalities are 

becoming more and more complex to develop, deploy, interconnect, manage, heal, and 

update [CNCF], [Mic22]. Often, the classical approach for the design of digital services 

(usually referred to as monolithic) does not fully meet the requirements of the most recent 

use cases in terms of flexibility, adaptability, continuous development, scalability, or 

resource management of the underlying applications [Mic22].  

To overcome this, the microservice approach is based on identifying independent 

functionalities (and the corresponding data modules) within the main service, removing 

unnecessary dependencies, and isolating them into modular, self-standing logical and 

operational blocks that relate with each other in a Service-Based Architecture (SBA) via 

dedicated interfaces and through an event distribution bus. Microservices conceived in such 

a manner can be developed, run, and orchestrated independently, because each of them is 

a self-contained coherent entity. They can be programmed in different languages, and the 

computer-scientific development and maintenance of each of them can be adapted to 

evolving needs without having to reshape the whole service architecture or without 

impacting how other microservices operate.  

The composition of microservices into bigger end-to-end services is therefore flexible and 

scalable thanks to modularity, and technology-agnostic thanks to the SBA and the well-

defined interfaces. An architecture made of microservices facilitates a software 

development process based on continuous delivery, enabling the implementation of small 

changes of the application via rebuilding and redeploying a single or few microservices. 

Further, it adheres to principles like fine-grained interfaces, allowing independent 

deployment of services, business-driven development, and the DevOps approach [MB20]. 

Thanks to their features, microservices can play very naturally the role of components of 

cloud-native (network) functions. Cloud-native refers to a function or an application that is 

specifically conceived for running in the cloud, taking advantage of the cloud’s 

infrastructural and management capabilities. Cloud-native applications are suitable for 

automated orchestration and monitoring, and profitably rely on the cloud’s built-in 

resilience, scaling, and self-healing mechanisms. The Cloud Native Computing Foundation 

(CNCF) states that “[…] containers, service meshes, microservices, immutable 

infrastructure, and declarative Application Programming Interfaces (APIs) exemplify” the 



 

 Page 12 of 53 D2.1 FUDGE-5G Technology Components and Platform 

cloud-native approach [CNCF]. In particular, containers are technological enablers for cloud-

native software. They package code, libraries, dependencies, and run-time into a single 

binary image, so that they can be moved easily and can run in any environment. Instances 

of containers are executed by a common operating system. They fit well in the microservice 

framework since each container occupies a well-defined “slice” of the hosting infrastructure 

and is isolated from the other containers. 

Notice that the natural suitability of microservices for cloud environments does not strictly 

imply that all cloud-native functions are microservice-based, nor that microservices can only 

be deployed in the cloud. In some contexts, when the abuse of terminology does not create 

confusion, microservices and cloud-native functions may be identified, but here we prefer 

to stress their difference, graphically represented in the Venn diagram of Figure 1-1. 

 

 

Figure 1-1 – Difference between cloud-native functions and microservices at a glance. 

 

In the next sections, we will discuss how cloud-nativeness and microservices suitably 

support an efficient orchestration and deployment of network services and functionalities. 



 

 Page 13 of 53 D2.1 FUDGE-5G Technology Components and Platform 

2 Cloud-Native Service Orchestration 

Orchestration embraces automation and orchestration techniques have evolved to cope 

with vertical industries’ requirements, specially to accommodate heterogeneous services 

on top of the generic 5G environment while facilitating the provisioning procedure by 

means of vertical-oriented information/data models and APIs. This is critical for the 

commercial survival of today’s service providers, who face rising technology complexity, 

increased commercial pressures, and accelerated technology refresh cycles. Another 

missing part is the capability of the Enterprise Services (cf. [D1.2], [D2.1]) to fully exploit the 

flexibility of Network Function Virtualization Infrastructure (NFVI) and dynamically interact 

with these orchestration primitives and the programmable network. In that sense, a service 

orchestration, considering the needs of the core network and of vertical applications is a 

key factor for success in the enterprise market. The role of the orchestration process at the 

service level is to handle the deployment and real-time management of the aforementioned 

services, while inherently providing elasticity and compliance with certain high-level service 

policies. This process essentially decouples the service layer management procedures from 

the network layer management, providing service awareness to the underlay management 

(resource allocation, slice creation and management) of the programmable infrastructure, 

and compatibility with any network orchestration solution.  

The overall concept is aligned with modern complex services, which are designed over 

distributed architectures with edge processing capabilities. Such services consist of a chain 

of cloud-native components that can be managed individually, i.e., microservice-based 

software development design patterns a.k.a. 12-factor app [Wig]. Each microservice 

(component) is bundled in an orchestration-friendly way, i.e., as a Virtual Machine (VM) 

image, a container, or even a unikernel maintaining backward compatibility with all three 

industry-leading approaches, while offering important telco-interplay capabilities such as 

bi-directional interaction with an Operations Support System (OSS) and slice management 

system.  

From the system design point of view, service orchestration can be made possible via an 

orchestrator that provides an open development environment, utilizable by application 

developers to create and onboard their application microservices (components) adopting a 

unified programmability model and a set of abstractions. In its northbound end, such an 

orchestrator interfaces directly with the frontend user for the onboarding of the requested 

application microservices, and, in its southbound interface, it is connected either directly to 

the programmable infrastructure or the OSS that manages the programmable 

infrastructure for providing the application level requests that should satisfy the service’s 

functional and operational requirements. 



 

 Page 14 of 53 D2.1 FUDGE-5G Technology Components and Platform 

2.1 Design and Development Approach 

In FUDGE-5G’s vision, a typical orchestrable service (such as Enterprise Services [D1.2], 

[D2.1]) consists of several cloud-native microservices or components ⎼ i.e., components 

that must collaborate in order to fulfil a broader operational scope. Collaboration implies 

that these components form a logical graph based on their dependencies. As described in 

Section 1, the term cloud-native refers to specific properties that these components should 

have to be ported to the cloud. However, despite the baseline abstract definition of “cloud-

nativeness”, let us point out that the term has never (and probably cannot fully) been 

strictly formalized and may lead to highly different realizations of cloud-native functions 

from vendor to vendor. On top of that, the flexibility of programmable underlays introduces 

additional parameters that should be taken under consideration for a “strict” definition of 

a cloud-native component. Programmable systems allow the dynamic reconfiguration of 

provisioned resources (e.g., compute, memory, storage, QoS, security), which are 

capabilities that may be overlooked during the development of cloud-native service. 

In the frame of FUDGE-5G, we consider that an Enterprise Service is composed of a set of 

software components that are orchestrable in a cloud-native fashion. Such components 

have the following characteristics: 

(A) Its configuration parameters are exposed separately from its own code (config file), 

along with their metadata (e.g., which are the acceptable values? Can these 

parameters change during the execution?), and outside of the component itself. 

(B) It exposes chainable interfaces that will be used by other cloud-native components 

to create a service graph. 

(C) It exposes quantitative metrics regarding the QoS level related to the cloud-native 

component. 

(D) It is typically wrapped in a lifecycle-management programmability layer to be used 

during the placement of a service graph in the platform resources. 

(E) It is stateless to be horizontally scalable by design. 

(F) It is reactive to runtime modification of offered resources to be vertically scalable by 

design. 

(G) It is not strongly dependent on physical storage, network, and general-purpose 

resources. 

Regarding (A), it could be argued that, if a cloud-native component entails a specific 

configuration layer, it is extremely crucial to be reconfigurable by design (i.e., to adapt to 

the new configuration without interrupting its main thread of execution).  

Regarding (B), it is clear that dynamic coupling of services is highly valuable only when an 

actual binding can be fully automated during runtime. This level of automation raises severe 

prerequisites for the developed cloud-native components. The “profile” of the chaining 

should be clearly abstracted. Such profile includes the offered/required datatype, the ability 



 

 Page 15 of 53 D2.1 FUDGE-5G Technology Components and Platform 

to accept more than one chaining, etc. These metadata are often stored in highly efficient 

key-value stores (such as [Consul]) to be queried by requesting cloud-native components.  

Regarding (C), it should be noted that, while cloud-native component-agnostic metrics are 

easily measured, the quantification of business-logic-specific metrics cannot be performed 

if a developer does not implement specific application-level probes.  

Regarding (D), the recent developments in the virtualization compendium provided novel 

management capabilities. For instance, the live migration from one hypervisor to another 

one has been now integrated as a core built-in feature of KVM [KVM] for more than a year. 

Hence, a cloud-native component that is running on a specific platform may be literally 

“transported” to another one with minimum down-time. In other words, both cloud-native 

components should expose a basic programmability layer, which handles the high-level 

cloud-native component lifecycle (e.g., remove chained dependency).  

Regarding (E), any service that is stateless can scale easily with the usage of some 

“facilitating” services such as network balancers or web balancers. The emergence of the 

infrastructure programmability model will progressively “offload” this task to Virtualized 

Functions (VFs) that are controlled by a cloud orchestrator. Ensuring the stateless behavior 

of a service graph is a challenging task since the entire business logic should entail stateless 

behavior in order to be horizontally scalable by design. 

Regarding (F), taking under consideration the developments in hypervisor technologies and 

Operative System (OS) kernels in the last two years, it could be argued that the barriers of 

dynamic provision and de-provision of resources on an operating system have been raised. 

However, the dynamic provisioning of resources to a virtualized system does not imply that 

these resources are automatically bound to the hosted cloud-native component. On the 

contrary, in most of the times the cloud-native component has to be (gracefully) restarted 

in order to make use of the new resources. 

Finally, regarding (G), it should be noted that not every valid cloud-native component is 

capable to be ported to a modern infrastructure since the cloud-native component cannot 

be hosted in all PaaS or IaaS providers. A different approach to tackle this is to provide the 

capability to declare some dependencies or specific platform features that are required to 

support the optimal functionality of the component before the instantiation of it, e.g., the 

need for specific hardware like a Graphics Processing Unit (GPU). 

 

 

 

 



 

 Page 16 of 53 D2.1 FUDGE-5G Technology Components and Platform 

2.2 Requirements of Service Orchestration 

The cloud computing/programmable infrastructure-as-a-code paradigm, along with the 

support of microservice-driven architecture, generated additional requirements. These 

include:  

• rapid provisioning of compute resources,  

• basic monitoring,  

• rapid deployment,  

• easy to provision storage,  

• authentication/authorization,  

• standardized interfaces (e.g., Remote Procedure Call – RPC, HTTP). 

The requirements of 5G-ready services coincide with the aforementioned requirements. 

Yet, they are much more intensive, since provisioning of infrastructure should be 

“instantaneous”, topology is continuously changing, delay tolerance is minimum, etc.  

In the scope of FUDGE-5G, the service is distributed and consists of cloud-native 

components that rely on telco infrastructure as a means of network abstraction. The telco 

infrastructure has to operate on top of a programmable 5G environment. Towards these 

lines, the FUDGE-5G architecture relies on a solid interplay between various logical layers 

such as the actual data plane, the control plane and the configured virtualized resources 

that are offered by the infrastructure provider as a proper slice. The concept of the service, 

the modelling and supported functionalities can be considered applicable to various vertical 

contexts. 

 

2.2.1 Service Orchestration Primitives 

As stated above, FUDGE-5G considers Enterprise Services as consisting of multiple 

components that can be deployed on top of a programmable infrastructure. These 

components, when combined with each other, can be represented by a graph that captures 

the entirety of the service. In other words, a service is represented by graph where 

components are vertexes and edges are the component-links. For the sake of clarity, the 

formal metamodels of this graph and the component are analyzed in [D1.3].  

Without delving into the details of this metamodel, it should be clarified that the 

components that comprise the graph should satisfy the requirements of cloud-native 

components that are written in Section 2.1 and are aligned with the 12-factor methodology 

[Wig]. Being cloud-native is essential for the proper placement of these components to 

virtualized environments. Moreover, to be in line with the state-of-the-art principles of 

cloud services, components should be also programmable. Programmability is provided by 

a transparent proxy which is running on top of the component. This proxy is also addressed 



 

 Page 17 of 53 D2.1 FUDGE-5G Technology Components and Platform 

as “sidecar”. A service graph consists of programmable components, where each of them is 

proxied by an individual sidecar. As written in [D1.2], in FUDGE-5G the service provider can 

interact with a development environment that is responsible for packaging a cloud-native 

component in a proper format, making it usable by the control plane (service orchestrator). 

In general, it is developed to support all pre-deployment steps of a vertical service. Such 

steps include the proper packaging and the proper combination of cloud-native 

components in the form of complex graphs. Cloud-native components and service graphs 

will be persisted in a repository to be searchable (in general Create, Read, Update, Delete – 

CRUD – operations) by service developers. On the other hand, the logically centralized 

control plane is responsible for the orchestration, monitoring and policy enforcement over 

the deployed service. 

 

2.2.2 Proxies in the Service Orchestration 

The deployment of an Enterprise Service (cf. [D1.2],[D2.1]) relies on an abstracted network 

layer. The approach of network abstraction is considered as a state-of-the-art approach 

from industrial giants of the cloud industry. Indicatively, Google, HP, Red Hat, Twitter have 

converged to a high-level architecture regarding the network abstraction of cloud-native 

services. The core element of this architecture is the component-proxying, i.e. the fact that 

each cloud-native component is interacting with other components through a proxy. The 

interaction between the proxies constitutes the data plane, while the configuration actions 

of the proxy are based on information gathering that is performed by the proxies per se. 

The information gathering, along with the actions’ enforcement, is addressed as control 

plane. 

Since proxies are core part for the coordination and the deployment of vertical services, 

they undertake several tasks, such as 

• dynamic service discovery,  

• load balancing,  

• Transport Layer Security (TLS) termination,  

• circuit breaking,  

• health checking,  

• traffic shaping (layer 7),  

• publication of metrics.  

To perform dynamic service discovery, the proxy assumes that the entire 5G-enabled 

service is supported by a service registry (such as Consul [Consul]) to keep track of the 

existing instances. It also assumes that new instances are automatically registered with the 

service registry and unhealthy instances are automatically removed.  Additional 

functionalities are that they enable to dynamically load and apply layer-7 filters. Such filters 



 

 Page 18 of 53 D2.1 FUDGE-5G Technology Components and Platform 

will act as enablers of several actions. Thus, during policy formulation, the available filters 

that can be potentially applied determine the type of layer-7 actions that can be performed. 

All the described functionalities are leveraged by the orchestrator, which interacts with the 

intelligent proxies, in order to properly configure them and to enforce any policy that has 

been defined by the customer. 



 

 Page 19 of 53 D2.1 FUDGE-5G Technology Components and Platform 

3 Decomposition of 5G Core Network 

Functions 

The increasing softwarization of mobile core NFs is fostering the evolution of the mobile 

network architecture itself, which in 5G has moved towards a service provider/consumer 

framework and service-based interfaces. Moreover, the 5G architecture was conceived to 

be adapted to the exploitation of mobile technologies also for dedicated non-public uses as 

an alternative to nation-wide deployments. The 5GC is a crucial part of this architectural 

paradigm shift, which aims at closing the gap between the telecommunications domain and 

the IT world at large. Keeping in mind the topic of Section 2, the objective of this section is 

to shed some light on the degree of possible pervasiveness of software design concepts like 

microservices and cloud-nativeness in the context of 5G mobile networks.  

Specifically, we will: 

• discuss the general criteria for the decomposition of 5GC NFs into microservices, 

also analysing the differences between the public and non-public use case, 

• apply such an approach to an exemplary set of 5GC NFs, 

• propose ways forward towards the adoption of these concepts in beyond-5G 

mobile systems. 

 

3.1 Microservices and 5G Networks 

3.1.1 Service-Based Architecture in 5G Networks 

Recently, thanks to the advent of an SBA also for 5G networks, the approaches of cloud-

nativeness and microservices have become of interest for mobile telecommunications. 

When transitioning from generic distributed systems to mobile network systems, we have 

to account for NFs rather than generic business functions. As part of a critical infrastructure, 

5G NFs may have to satisfy stringent requirements in terms of latency, dependability, and 

security (for security aspects, see Section 3.1.3). In the past, this was the motivation of 

having dedicated hardware implementing all network segments and functionalities. 

However, since the 4th generation of mobile networks (4G), industry-driven standardization 

initiatives have raised [NFV12], based on the idea to replace physical NFs with Virtual NFs 

(VNFs). 



 

 Page 20 of 53 D2.1 FUDGE-5G Technology Components and Platform 

 

Figure 3-1 - 5G system architecture and network functions as in [TS23.501]. 

The trend was completed with 5G networks, starting with 3GPP’s Release 15 [TS23.501]: a 

paradigm shift in the system architecture was introduced on how control-plane NFs 

communicate among each other. In pre-Release 15 systems, all NF instances had a strict 

one-to-one relationship with each other and used application layer protocols such as 

Diameter. With the advances of cloud solutions that can scale on demand, Release 15 

adopted an SBA for their 5GC (cf. Figure 3-1), with the following changes: 

• Decomposition of the mobile network's core functionality into smaller independent 

and self-contained NFs.  

• Introduction of the concept of consumer (endpoint/clients) and producers (service 

endpoint/servers) without strict requirements on which consumer is allowed to 

communicate with which producer. 

• Introduction of Service-Based Interfaces (SBIs) for the majority of 5GC NFs, moving 

to HTTP/2 as the application layer protocol and JSON-encoded payload. 

All 5GC control-plane NFs interact within an SBA, except for the interfaces towards the radio 

access network (RAN), the User Equipment (UE), or User Plane Functions (UPFs), called N1, 

N2, N3, N4, N6, N9. Specifically, a key NF called Network Repository Function (NRF) 

manages NF service registration and discovery, enabling NFs to identify appropriate services 

in one another. After the discovery phase, a NF service producer can deliver notifications to 

a NF service consumer provided that the latter subscribes to those notifications. 

In Release 16, another key component was added to the 5G system architecture, i.e. the 

Service Communication Proxy (SCP), taking over the responsibility of proxying traffic 

between a consumer and producer instances. The deployment of an SCP is optional, and 

the SCP does not expose a 5GC service itself. Instead, it is used for “indirect communication 

between NFs and NF services” [TS23.501] and is an addressable endpoint via an IP address 

or a Fully Qualified Domain Name (FQDN). If no SCP is deployed, consumers and producers 

communicate with each other without an SCP, and Release 16 refers to that as a “direct 

communication.” 



 

 Page 21 of 53 D2.1 FUDGE-5G Technology Components and Platform 

Hence, the 5G SBA is already compatible and well aligned with a (micro)service-based 

approach. In the work of T2.4 of FUDGE-5G, we aimed at walking further onto this path, and 

we have focused on the possibility of decomposing control-plane 5GC NFs into actual 

microservices, keeping in mind the peculiarities of mobile telecommunications with respect 

to the rest of the IT world. 

 

3.1.2 Service-Based Architecture and Microservices for Public and Non-Public 

5G Networks 

The 5G standard has been transforming networks from pure communication systems into 

powerful and flexible connect-compute infrastructures, apt to serve the purposes of various 

vertical sectors, like Industry 4.0, automotive, healthcare, or energy. These verticals 

leverage the high adaptability of 5G networks to impose their own specific (and often 

restraining) requirements on the demanded telecommunication performance or on the use 

of virtual and physical resources. As opposed to traditional national monolithic networks, 

which were not designed to properly satisfy all the potentially very diverse sets of 

conditions imposed by the new use cases and applications, 5G network slicing [TS23.501] 

provides operational isolation of different parts – the slices – of the network, thus 

supporting multiple vertical customers at once. 

In this context, as a complementary solution to network slicing, the deployment of 5G Non-

Public Networks (NPNs) [TS23.501] is becoming a more and more common choice for 

private companies and public institutions that want to maximize the control capability on 

their own private telecommunication systems, acquiring independence from traditional 

mobile network operators. Such NPNs fill the performance and service gaps left 

unaddressed by nation-wide Public Land Mobile Network (PLMN). Consequently, 

interoperability among local NPNs and between each NPN and PLMN has become a major 

focus point for all the parties involved in the 5G conception and deployment. In this 

perspective, SBA and the decomposition of NFs into microservices are envisioned to play a 

key role to enable the efficient coexistence of NPNs and PLMNs in a truly dynamic and 

automated manner.  

This holds true a fortiori whenever some virtual or physical resources are deployed at the 

edge of the network or when they are shared, for example in cases where a PLMN operator 

provides localized and private services to a customer (e.g., by means of a dedicated network 

slice) while running its usual operations in the same area. In fact, inter-network 

communication and end-to-end network service orchestration can all be managed faster 

and more efficiently when functions and applications are decomposed into independent, 

self-contained, and easily accessible pieces of software, like microservices.  

FUDGE-5G’s work on microservices and 5GC NFs has this framework as a reference. We 

remark, however, that there exist prominent NPN application scenarios which require to 



 

 Page 22 of 53 D2.1 FUDGE-5G Technology Components and Platform 

minimize network interoperation and external points of contact. This is the case, for 

instance, of high-privacy networks with very stringent security requirements or NPNs 

deployed for specific use cases that benefit from being isolated from other systems or 

simply are so by nature, as those dedicated to Public Protection and Disaster Relief (PPDR) 

or deployed in remote locations (e.g., mid-sea oil stations, underground mines, even 

airplanes). For these kinds of NPNs, interworking and dynamic orchestration might not be 

as important as the apparatus’ resilience and security, thus the choice of monolithic 

architectural solutions may still be taken into consideration. Nonetheless, microservices 

remain beneficial in this case for technological forward-compatibility (cf. Section 3.2.3). 

 

3.1.3 Security Considerations for 5G Core Networks 

With the transition to an SBA for the 5GC, 3GPP follows the semantics of the Internet for 

endpoints to communicate with each other including aspects around authentication and 

authorisation. As the Internet operates as a decentralised system, both endpoints (client 

and server) must implement methods to verify the identity of the other one including the 

authoritative verification if a certain communication or resource can be exchanged. 

Additionally, all the communication between the two endpoints must be secured 

prohibiting anyone to access the content of any information that is exchanged between the 

two endpoints. 

For services publicly available over the Internet, different security procedures have been 

put in place for enabling several levels of securities mainly related to authorisation, but 

partially authentication too. Generally, TLS is a widely adopted protocol for securing the 

communication between a client and a server [Res18]. TLS is a certificate-based protocol 

that enables the verification of server identifies so that clients can be assured they are 

communicating with the entity they intend to start a “conversation”. All root certificates 

are signed and issued by trusted authorities and can be verified online. As a result, each 

client application can independently verify a server and its certificate. Once the TLS session 

has been established, plain text information can be exchanged with the server, which is 

encrypted along the transport link. This is illustrated in Steps 1 in Figure 3-2. 

Upon the completion of a secure channel between a client and a server and the validation 

of the server’s identity, the client must authenticate itself allowing the server to verify the 

identity of the client. In order to do so, a TOKEN-based approach is widely used, where the 

client provides its credentials (certificate or username + password), as illustrated in Steps 2. 

In Step 3, the client uses the token for every communication with the server, allowing the 

server to verify the client. This verification is often based on a shared master key across 

client and servers as part of the application. 



 

 Page 23 of 53 D2.1 FUDGE-5G Technology Components and Platform 

 

Figure 3-2 - Procedures for encrypted modern web-based communication. 

All SBI-enabled 5GC NFs can utilise the TLS/SSL (Secure Sockets Layer) and Access Token 

procedures to verify, authenticate and authorise consumer and producer instances. Given 

the wide acceptance of these procedure for secure communication in the areas of banking, 

contractual agreements, and online commerce, FUDGE-5G assumes that once all NFs follow 

the procedures described herein, security does not need to be addressed separately and 

does not need require further attention in this deliverable. 

 

 

 



 

 Page 24 of 53 D2.1 FUDGE-5G Technology Components and Platform 

3.2 5G Core Network Function Design Patterns 

The goal of this subsection is to study the decomposability of 5GC NFs into microservices, 

consistently with the definition of the 5G SBA recalled in Section 3.1.1. This analysis is not 

trivial, especially because such a decomposition cannot be automatically obtained by 

creating one microservice for each of the services produced by a 5GC NF. The specific 

services produced and consumed by the 5GC NFs as defined by 3GPP [TS23.501], 

[TS23.502], are not fully compatible with the definition of microservices that we gave in 

Section 1. More precisely, as further explained in Section 3.2.2 and 3.2.4, such services are 

not always fully independent of one another and cannot always be associated with a single 

bounded context [Eva04]. Hence, it is not always possible to straightforwardly deploy as an 

actual microservice each 3GPP-defined service of a NF, in what would be a simple one-to-

one mapping between a NF’s logical sub-functionalities and the microservices into which it 

is split. The partition of a NF’s functionalities into actual separate bounded contexts is 

necessary to reach an effective microservice decomposition.  

After briefly overviewing some previous work on this matter and discussing the main 

underlying criteria, advantages, and limitations of a microservice-based approach, we are 

presenting in Section 3.2.4 the design work of FUDGE-5G’s T2.4, which yielded some 

examples of 5GC NF decompositions into microservices. Our work is still aligned with 3GPP 

but considers CNCF’s recommendations for microservice development and deployment. 

 

3.2.1 Previous Work on Microservice Designs in 5G Core Network Functions 

Some proposals to incorporate the concept of microservices in the design of 5GC NFs have 

recently appeared in literature. [DWWN20] reports on the cloud-native modular design and 

the implementation of the functional procedures of an Access and mobility Management 

Function (AMF) conceived for microservice-based architectures within the 

OpenAirInterface (OAI) project. The authors give a description of the different data and 

functional modules and the architectural implementation layers that constitute their AMF. 

However, we observe that the focus of [DWWN20] is more on the cloud-nativeness of such 

an approach and the compatibility with cloud environments, rather than an actual 

microservice-based design of the AMF itself.  

Some vendors have proposed cloud-native 5GC designs that claim to embrace microservices 

principles [Ora20], [Sam20], however the lack of a shared approach to NF decomposition 

weakens the effectiveness of the design. Finally, related work exists on how to provision, 

manage, and automatically orchestrate microservice-based NFV service platforms and VNFs 

in 5G [dDWZ20], [Soe+18]. 



 

 Page 25 of 53 D2.1 FUDGE-5G Technology Components and Platform 

3.2.2 General Criteria for Network Function Decomposition into 

Microservices 

We have identified two main approaches on how to make NFs interact via SBIs:  

1. Based on interfacing the entire monolithic NF. 

2. Based on identifying its sub-functions providing NF services to be interfaced. 

The first approach is quite conservative but may be safer or more pragmatic while 

transitioning from monolithic NFs towards a full-fledged microservice architecture. It 

consists in implementing, whenever possible, SBIs between NFs belonging to the legacy 

monolithic software architecture. The advantage of this approach is that the vendor does 

not need to decompose the monolithic NF into NF services, rather designing a unique SBI 

to interface different monolithic NFs. 

On the other hand, the second approach is more aligned with the spirit of 3GPP 

specifications, which provide both 

1. The functional description of each NF [TS23.501].  

2. The services provided by each NF [TS23.501]. 

As further elaborated in Section 3.2.4, our NF decomposition work follows the second 

approach and leverages an ingest API or similar functionality for the integration into 5G’s 

main SBA and SBI of the cluster of microservices into which each NF is decomposed, 

implementing the specific sub-functionalities. 

As a matter of fact, in principle, each of the NF services offered by a NF shall be self-

contained, reusable and use management schemes independently of other NF services 

offered by the same NF (e.g., for scaling, healing). This allows for agile dynamic scaling 

(horizonal/vertical), independent lifecycle management, and data isolation, in a framework 

that is highly compatible with microservices. Off-the-shelf methodologies like, e.g., the 12-

factor app [Wig], exist on how to convert a monolithic software into a set of microservices. 

In the specific case of a 5GC, the exercise consists in decomposing a monolithic NF into a 

set of sub-functions, each one implemented as a microservice, that form the NF as a whole. 

As we mentioned, 3GPP itself defines the functionalities of each NF, and helps making such 

an exercise easier especially for control-plane NFs since the services each of them provides 

are specified too.  

In other words, we may state that the 3GPP specifications provide initial (although not 

complete) guidelines for a logical decomposition in microservices of service producers. On 

the other hand, a service consumer does not offer any services and this criterion cannot be 

directly applied to them. 



 

 Page 26 of 53 D2.1 FUDGE-5G Technology Components and Platform 

Nonetheless, the decomposition of service producers and consumers can be done as per 

the criteria below, that FUDGE-5G has also recently brought to the attention of the Next 

Generation Mobile Network (NGMN) Alliance [NGMN22]: 

• Bottleneck Mitigation and Parallel Execution – An NF functionality that poses a 

bottleneck in terms of, e.g., performance within the same NF or direct interactions 

with other 5GC NFs may indicate that an ad-hoc microservice should be created for 

that. The intention would be to allow the utilisation of more compute capabilities 

for this microservice to mitigate the bottleneck.  

• Resilience – Key functionalities of an NF with high-availability requirements shall be 

isolated in dedicated microservices, so to increase resilience against failures and 

increase the dependability of the NF.  

• State Dependency – There can be dependencies between NF services within the 

same NF due to sharing some common resources/state, e.g., context data. In 

general, the state of an application is its condition or quality of being at a given 

moment in time – their state of being. In general, whether an application is stateful 

or stateless depends on how long the state of interaction with it is being recorded 

and how that information needs to be stored. In this context, there must be a 

criterion that depends on the data that a NF service needs to 

read/upload/retrieve/pre-process for running. It may be detrimental (in terms of 

latency or computational effort) to read/upload/retrieve/pre-process the same 

amount of data for several microservices, especially if of consistent size, and to keep 

it in sync across different instances of the same NF. This does not preclude that NF 

services offered by a single NF are managed independently of each other. 

Finally, we remark that decomposing a monolithic NF in microservices may increase the risk 

of breaches due to, e.g., unauthorised access. Thus, it is of paramount importance to adhere 

to state-of-the-art, recognized security technical implementation guidelines while 

developing the various microservices, so to assure, e.g., built-in authorization and 

authentication by means of JSON Web Tokens. 

 

3.2.3 Advantages and Limitations of a Microservice-Based 5GC 

Adopting the proposed criteria for NF decomposition is likely to bring the following specific 

business and functional benefits to vendors and operators. 

1. Product Flexibility – A fine-grained modular software architecture allows a vendor 

to customize its solution more easily and flexibly, according to the operator’s or 

vertical customer’s requirements, addressing the heterogeneity of needs that 

differentiate public nation-wide network operators and private network owners. 

Moreover, this is a key feature in some NPN deployment, e.g., ad-hoc private 



 

 Page 27 of 53 D2.1 FUDGE-5G Technology Components and Platform 

networks in PPDR use cases, characterized by the need for a compact form factor, 

to be deployed for instance in a van (cf. FUDGE-5G’s PPDR use case [D1.1]).  

2. Forward Compatibility – Mobile network standards are in continuous evolution. 5G 

has not been fully deployed yet, but the community has already started investigating 

the 6th generation of mobile networks (6G). A microservice-based design and 

development of NFs allows for a more straightforward and natural upgrade of a NF’s 

services and functionalities.  

3. Data Segmentation – Having separate database implementations, tailored to each 

microservice’s needs and without redundant information, makes user and network 

data better isolated, thus more easily manageable. This holds even more in 

distributed deployments, e.g., NFs over remotely located locations or over different 

network slices. 

Nonetheless, the proposed approach may also feature some downsides, which need to be 

evaluated depending on the application scenario, or at least one needs to account for some 

trade-offs regarding the following subjects. Considering that the plain, standard 5GC SBA is 

already microservice-compatible if one develops each entire NF as a single microservice, a 

further complexification and decomposition of the network architecture could bring 

concerns regarding: 

1. Development Effort – Deeper decomposition allows a more efficient reusage of 

functions in different end-to-end services (in terms of flexibility, as written above). 

Nonetheless, it may introduce further complexity within sub-functions and how they 

interact with each other, e.g., too many internal interfaces to develop or excessively 

complex event distribution systems within the function, especially at the beginning 

of the decomposition process. In general, a (very) fine-grained system 

decomposition may increase the overall development effort, especially when 

systems are very complex and are made of highly numerous functions and 

subcomponents. 

2. Security – 5G comes with more stringent security requirements than the previous 

generations, and many high-security use cases are envisioned especially for NPN 

deployments. While NF decomposition helps, e.g., by improving the database 

security thanks to segmentation and isolation, on the other hand the exposed attack 

surface as well as the number of potential vulnerabilities increase. 

Once again, both these limitations can be mitigated by a proper adoption of the 

Dev(Sec)Ops approach [MB20], as well as by adopting common security standards for 

encrypting communications and for authentication and authorisation (cf. Section 3.1.3). 

 

 

 



 

 Page 28 of 53 D2.1 FUDGE-5G Technology Components and Platform 

3.2.4 Examples of Decomposed 5GC NFs 

Keeping in mind the identified general criteria and the whole discussion elaborated so far, 

in this subsection we try to substantiate them diving into the decomposition of specific 5GC 

NFs. When passing from theory to practice, the analysis of the multiple functionalities of 

each NF indicates that the NF services specified by 3GPP may not be fully independent of 

one another, thus complicating the design phase. It results that it is not always possible to 

associate them with a single bounded context [Eva04] in the 5G domain. The work of T2.4 

that we report here considers that a proper decomposition into microservices needs to 

identify the bounded contexts that each functionality of a NF addresses in the 5G domain. 

Then, each identified bounded context can be implemented as a microservice, within the 

same NF. For compatibility with the standard, 3GPP-specified SBIs can eventually be 

exposed through another microservice, an API Gateway or an Ingest API, which also shields 

the internal microservices in the fashion of a De-Militarized Zone (DMZ). The Ingest API 

basically plays the role of a reverse proxy, whereas the API Gateway implements further 

logic and additional aggregation functionalities, necessary when a service request from a 

consumer NF is concretely mapped towards more than one of the microservices into which 

a producer NF is decomposed. 

According to this approach, in the following of this section, we propose a possible degree 

of decomposition of some functionally heterogeneous 5GC NFs via: 

1. The identification of independent functional or data modules for the services 

provided by an NF. 

2. The identification of the dependencies with other NFs.  

3. The identification of the relation among services within a NF’s architecture. 

The global complexity and numerousness of the 5GC’s NFs prevents us from an exhaustive 

and omni-comprehensive analysis of their decomposability into microservices. As 

anticipated in [D2.1], we have chosen therefore to restrict ourselves to the following list for 

the following reasons: 

• Unified Data Management (UDM) because it is a strictly necessary function even in 

minimum-footprint deployments and because it plays an essential role in enabling 

the statelessness of the other NFs. 

• Authentication Server Function (AUSF) because of its tight interaction with the UDM 

and the UE authentication features it implements. 

• User Plane Function (UPF) because it is mandatorily required in a minimum-footprint 

implementation of a 5G system and because of its peculiarity of providing all the 

user-plane functionalities at the 5GC level.  

• Policy Control Function (PCF) because of its central role in establishing and managing 

(in collaboration with the Session Management Function, SMF) the QoS policies in 

PDU sessions. 



 

 Page 29 of 53 D2.1 FUDGE-5G Technology Components and Platform 

• SMF, because of its tight collaboration with the UPF and the PCF. 

• Network Exposure Function (NEF) because it is an important enabler of 5G advanced 

features, tightening and deepening the interaction between the 5GC and external 

applications. 

• Cell Broadcast Centre Function (CBCF) because it substantially consists of a trusted 

Application Function (AF) and because it is utilized in the use cases considered by 

FUDGE-5G (e.g., the PPDR use case) [D1.1]. 

Overall, the selected NFs are highly representative of the main 5GC features, architectural 

peculiarities, and functionalities of interest for FUDGE-5G. 

 

3.2.4.1 Unified Data Management 

 

Figure 3-3 - Proposed microservice-based UDM design. 

The UDM function supports several functionalities including user identity and authorization 

[TS23.501]. These functionalities are broken down into several services [TS23.501] used 

mainly by the procedures specified in [TS23.502]. 

As shown in Figure 3-3, the analysis of the functionalities has led to the identification of 

three bounded contexts [Eva04]: 

• Authorization, to grant service authorization to positively identified users, based on 

operator policies, including subscription data. 

• UE Context, to provide access to the dynamic state of the services being provided to 

the user. 



 

 Page 30 of 53 D2.1 FUDGE-5G Technology Components and Platform 

• Service Events, to monitor events that may require a change in the services provided 

to the user and notify consumer functions who have manifested interest in those 

events. 

The identified bounded contexts are implemented as microservices, viz.: 

• Authorization Service,  

• UE Context Service,  

• Monitoring and Notification Service,  

and are used by a fourth microservice, the API Gateway, which exposes the UDM 

functionality through the 3GPP-specified SBIs, ensuring the security of the underlying 

services at the same time. 

Data is stored within the microservices, as required by a microservice-based architecture, 

but the use of an external Unified Data Repository (UDR), particularly for a cloud-native 

implementation is not excluded. 

It should be highlighted that, as opposed to other UDM designs proposed in literature 

[OraU20], the proposed architecture ensures that the three “backend” microservices do not 

share data among each other. 

Within T2.4’s activities, ATH developed a microservice-based prototype of UDM, designed 

and implemented as described in this section. The functioning and design features of this 

prototype were validated in a dedicated demonstrational setup in ATH’s R&I labs, whose 

results are also published in [Ish+22]. In such a setup, the microservice-based UDM is part 

of a proof of concept aimed at demonstrating the implementation of an on-demand 

provisioning procedure of a Network Slice Subnet (NSS) composed of VNFs from potentially 

different vendors. The demonstration includes a Network Management System (NMS) 

conforming to the 3GPP Service-Based Management Architecture (SBMA), an ETSI MANO 

orchestrator, and a NFVI. In particular, this work demonstrates the provisioning, 

configuration, and control of the exemplary NSS shown in Figure 3-4, composed of two NFs: 

the microservice-based UDM and an NRF, implemented by different developers and 

mimicking vendor-independence. Whereas the UDM is an agglomeration of independent 

microservices and is “SBMA-aware”, the NRF is monolithic and does not expose SBMA-

compliant management services. 

Notice that for the mere purpose of validating our NSS management system, two NFs are 

sufficient, and the whole prototype focuses more on the configuration, management, and 

control features of the system, rather than on the “richness” in terms of deployed 

functionalities of the NSS itself. In this sense, the UDM and NRF are two good candidates 

for a “minimum footprint” NSS because they do not depend on the functionality of other 

NFs in the 5GC. 



 

 Page 31 of 53 D2.1 FUDGE-5G Technology Components and Platform 

 

Figure 3-4 - Prototype of network slice subnet with microservice-based UDM. 

The demonstration described in [Ish+22] comprises three phases: preparation, 

commissioning, and operation of the prototyped network slice.  

1. In the preparation phase, the NSS, including its networking, is designed, and that 

information is provided to the NMS and NFV MANO. The NSS corresponds to a 

Network Service (NS) in NFV MANO [TS28.541], and is described in a Network 

Service Descriptor (NSD) [IFA014]. The NSD specifies the required VNFs – described 

in VNF Descriptors (VNFDs) – and their networking requirements.  

Each VNF is made up of one or more VNF Component (VNFCs) and specifies the 

component's Compute Storage and Network resource requirements. For the scope 

of FUDGE-5G’s T2.4, it is important to highlight that each UDM microservice was 

modelled as a different VNFC, thus permitting the demonstration of the 

instantiation of a VNF with multiple VNFCs and validating the microservice-based 

approach in an OAM framework. The NSD and the constituent VNFDs are defined 

yaml files and together with the software images of the constituent VNFs are on-

boarded in Open-Source MANO (OSM), the ETSI MANO orchestrator. 

2. In the commissioning phase, the NSS is created via the Network Slice Subnet 

Management Function (NSSMF), which is part of the NMS. The NSSMF requests ETSI 

MANO to create and instantiate an NS instance based on the specified NSD 

[SOL005]. The NSSMF fetches the information on the instantiated NS from ETSI 

MANO, determines the instantiated VNFs, together with the allocated virtualized 

resources, including networking, and requests the Network Function Management 

Functions (NFMFs) of the VNFs to create the VNF-related Managed Object Instances 

(MOIs). Finally, the NSSMF creates a MOI for the instantiated NSS and notifies the 

NMS.  

3. The NSS is now configured and operational. During the operation phase, the correct 

functioning of the previous procedure and the status of the VNFs that compose the 



 

 Page 32 of 53 D2.1 FUDGE-5G Technology Components and Platform 

NSS can be verified via a user interface. Within the functioning system, a user can 

inspect the attributes of the instantiated objects. In particular, one can see which 

5G services the VNFs offer and the relative Service Access Points (SAPs), what the 

state of those services is, and whether the UDM is registered in the NRF or not. The 

5G services of the NFs can be invoked to verify the effective activation of the NSS. 

 

3.2.4.2 Network Exposure Function 

 

Figure 3-5 - Proposed microservice-based NEF design. 

The Network Exposure Function (NEF) is located between external (AFs) and the 5GC. It is 

responsible for providing an access point for external applications to access the 5GC 

securely [TS23.501].  

As shown in Figure 3-5, the envisioned microservice-based NEF encompasses a scalable and 

stateless API Gateway that processes RESTful requests to NEF and forwards them to the 

correct NEF microservice instance.  

Behind it, there are three microservices, that are:  

• The UE communication policies service. 

• The Subscription and notification service. 

• The IoT and low-power communication service. 

The first one deals with UE policy request and configuration, e.g., QoS, traffic influence. The 

second one implements the publish/subscribe operations intended to monitor the network 



 

 Page 33 of 53 D2.1 FUDGE-5G Technology Components and Platform 

and the UEs. Finally, the third one is responsible for operations towards IoT and low-power 

devices, e.g., Non-IP Data Delivery (NIDD), Background Data Transfer Policy (BDTP). 

Each of the three microservices consumes the RESTful APIs exposed by the 5GC NF 

producers through the 5GC service bus. By having this decomposition, both a logical 

separation and self-compartmentalization are achieved, with greater benefits towards 

reliability, security, and performance. 

For validation and benchmarking purposes, two sets of tests were performed to assess the 

performance of an implementation of such a NEF. These tests consisted in sending a high 

number of requests from a demo AF and a demo PCF through NEF. The setup was deployed 

on a testbed with the following characteristics:  

 

Table 1 - Setup for NEF validation. 

NF Components Instances Resources Extra configurations 

NEF NEF (3GPP 
Compliant) 

1 1 vCPU (Intel Core 
Processor (Skylake) 
@ 2.40 GHz), 
1024MB of RAM 

Additional security layer 
disabled, collection of 
monitoring metrics 
enabled. 

PCF BSF, PCF and NRF 
(3GPP Compliant) 

1 1 vCPU (Intel Core 
Processor (Skylake) 
@ 2.40 GHz), 
1024MB of RAM 

No extra settings. 

AF Demo AF (3GPP 
Compliant) 

1 to 3 1 vCPU (Intel Core 
Processor (Skylake) 
@ 2.40 GHz), 
1024MB of RAM 

Each instance is running 
up to 100 AF processes in 
parallel to further 
increase the load of NEF. 

 

The first set of tests focused only in validating that requests from AF to NF (in this case PCF) 

through NEF were successful. A single instance of the AF was used, and all requests reached 

PCF via NEF accomplishing the validation of NEF its basic functionality. The ensuing tests 

aimed to assess NEF its performance when a high number of AFs place multiple requests 

simultaneously. Running for 15 minutes plus warming up and cooling periods, the testes 

were split in three different stages, as depicted by Table 2. 

 

 



 

 Page 34 of 53 D2.1 FUDGE-5G Technology Components and Platform 

Table 2 - Performance tests stages. 

Stage AF Instances AF Processes Running  Average Requests/second 

1 1 (with 100 AF 
processes 
running) 

100 96,8 

2 2 (each with 100 
AF processes 
running) 

100 per Instance 193,6 

3 3 (each with 100 
AF processes 
running) 

100 per Instance 290,4 

 

In Figure 3-6 it is possible to observe the CPU usage of NEF for the entire test duration. The 

results show that NEF handles the requests very well during the first stage. On the following 

stages, it is visible the struggle that NEF has handling the added requests, with CPU usage 

above 90 percent, and an average of 143,7 requests/second for the second stage and 147,8 

requests/second for the last one. Concluding that there is almost no difference between 

stage 2 and 3 regarding requests handled. 

 

Figure 3-6 - CPU Usage for NEF performance tests. 

During the performance tests, memory usage was another value measured. Observing 

Figure 3-7, there are no meaningful changes in memory usage along the different stages. 

The only noticeable difference the fact that RAM usage for NEF was changing quickly up and 



 

 Page 35 of 53 D2.1 FUDGE-5G Technology Components and Platform 

down on stage 1. This allows us to conclude that NEF does not rely on high amounts of RAM, 

and it allocates almost the same amount for idle and high load status. 

 

 

Figure 3-7 - Memory usage for NEF performance tests. 

 

It is important to note that the testes presented are only for demonstration of the 

capabilities and validation of the NEF. Further testing has been done and the respective 

results will be reported in [D2.5]. 

The two images below contain an example of requests between the demo AF and PCF, made 

using REST and the specification from 3GPP, showing the full path in NEF’s logs. 



 

 Page 36 of 53 D2.1 FUDGE-5G Technology Components and Platform 

 

Figure 3-8- Requests from demo AF to demo PCF (via NEF). 



 

 Page 37 of 53 D2.1 FUDGE-5G Technology Components and Platform 

 

Figure 3-9 - Request logs from demo AF to demo PCF (via NEF).



 

 Page 38 of 53 D2.1 FUDGE-5G Technology Components and Platform 

3.2.4.3 Cell Broadcast Centre Function 

 

Figure 3-10 - Proposed microservice-based CBCF design. 

The CBCF is an instantiation of an AF in the 5GC architecture and provides a public warning 

service in which government organizations can submit text messages to be broadcast to 

mobile devices in the alert area. 

Figure 3-10 shows the architecture of a CBCF separated into microservices with only the 

most important microservices shown: 

• Cell Broadcast (CB) Kernel, 

• Cell Selection, 

• 2G, 3G, 4G, 5G Drivers, 

• Subscription Management. 

Based on the criteria and approaches described in the previous sections, this separation of 

the CBCF into the proposed microservices has the advantage that depending on the 

deployment case, only specific microservices need to be adapted rather than the entire 

monolithic CBCF service, as explained hereafter. 

The Ingest API of the CBCF receives public warning messages from a government system, 

i.e., a Cell Broadcast Entity (CBE). Often a government chooses a national profile of the 

Common Alerting Protocol (CAP) [Oas22], which implies that profiles differ for each country. 

The stateless Ingest API is a microservice that can easily be replaced to support another 

CAP-profile. 

After validation by the Ingest API, the message is passed on the internal bus to the CB Kernel 

service, which requests the Cell Selection microservice to determine the cell sites that cover 

the alert area as indicated in the area component. Drivers supporting specific network 

generations (2G, 3G, 4G or 5G) are instantiated as microservices according to the operator's 

network deployment; they also support (static) scaling when the number of cells in any 

network becomes big. 



 

 Page 39 of 53 D2.1 FUDGE-5G Technology Components and Platform 

Finally, a dedicated microservice manages subscriptions with the AMF and the NRF and 

renews subscriptions before they expire. This microservice cancels all subscriptions upon a 

graceful shutdown of the CBCF. 

At the moment of writing this text, interoperability testing has been successfully performed 

with the three biggest network vendors. Tests with partners of the FUDGE-5G project are 

planned and will be reported in [D2.5]. 

Figure 3-11 shows the logging of an interoperability test between CBCF and an AMF. In 

particular: 

• On line 5, a subscription request is sent by the CBCF, which is correctly 

acknowledged by the AMF, without causing errors.  

• Lines 15 and 16 show sending a Write-Replace-Warning Request.  

• The notification, which required the subscription, is shown on line 19.  

• Lines 21 and 22 show a Stop Warning Request with the notification on line 25. 

 



 

 Page 40 of 53 D2.1 FUDGE-5G Technology Components and Platform 

 

Figure 3-11 - Logging of CBCF-AMF interoperability test. 



 

 Page 41 of 53 D2.1 FUDGE-5G Technology Components and Platform 

3.2.4.4 Authentication Server Function 

The AUSF works as the front-end for the UDM to execute the authentication in the 5GC 

[TS29.509]. Depending on the subscription information provided by the UDM, the AUSF 

initiates one of the authentication procedures supported in 5G systems, 5G Authentication 

and Key Agreement (5G-AKA) or Extensible Authentication Protocol AKA’ (EAP-AKA’). It is 

responsible for generating master keys that are used by the AMF to derive subsequent keys 

for the authentication procedure. 

The AUSF interacts with the AMF (as a service consumer), the UDM (both as a service 

consumer and producer), and with the NRF (as a service producer) for registering and 

subscribing for services. For the UE registration, AMF sends authentication request message 

to AUSF. The AUSF talks to the UDM and obtains UE authentication information. For 

steering of UE, the UDM sends steering information to the AUSF to receive security contexts 

from AUSF and protect Steering of Roaming (SoR). 

Based on the services provided, a microservice-based architecture can be proposed for the 

AUSF, where different AUSF instances may be instantiated within the 5GC pertaining to 

different services. There are three types of AUSF services specified by 3GPP: 

• Authentication – responsible for authenticating the UE and generating master keys 

in the procedure for the consumer. 

• Steering of Roaming Protection – permits the consumer to protect the steering 

information of UE from being tampered in a Visited PLMN (VPLMN). 

• UE Parameter update data protection – responsible for permitting the consumer to 

protect the UE parameters update data from being tampered in a VPLMN. 

 

Figure 3-12 - Proposed microservice-based AUSF design. 



 

 Page 42 of 53 D2.1 FUDGE-5G Technology Components and Platform 

The consumer can access each of the services by the API GW (as shown in Figure 3-12) that 

exposes the functionalities of AUSF through the SBIs and ensures security to the underlying 

services. 

To realise the microservice-based AUSF architecture in FHG’s Open5GCore testbed, AUSF 

instances are registered in NRF with the services they provide along with the NF profile. The 

consumers that need to access a particular AUSF service can subscribe to the NRF with the 

service name. As soon as the AUSF instance is registered in NRF, it sends the information of 

the instance to the consumer to be used in the 5G procedures. Otherwise, the consumer 

can request NRF (getNFInstance) for the details of the AUSF instance to be used for a 

particular service. For the authentication service the process is shown in Figure 3-13. 

 

Figure 3-13 - Registration, subscription and getNFInstance functions for microservices. 

This architecture also can be extended to instantiate multiple AUSF instances for the same 

service to adhere to scalability and improve reliability in the 5G system. The monitoring 

service shown in Figure 3-12 is responsible to collect the metrics that are pushed by the 

other AUSF services and send them to a monitoring tool (e.g., Prometheus [Prometheus]). 

The metrics such as the number of registration requests received by AUSF, the 

authentication type, percentage of success, and failures, can help in deciding the state of 

the system, when to instantiate a second AUSF instance for the same service and in load 

balancing. This will also help to have a stable system and improve performance. 

 

 



 

 Page 43 of 53 D2.1 FUDGE-5G Technology Components and Platform 

3.2.4.5 Policy Control Function 

The PCF in 5G differs from the Policy and Charging Rules Function (PCRF) in 4G in the 

functionality and interaction with other network functions. PCRF builds the Policy and 

Charging Control (PCC) rules based on operator policies stored in own database, UE 

subscription profile retrieved from the Subscriber Profile Repository (SPR), or requests 

coming from external AFs that allocate dedicated bearers or other policies to the data plane. 

As a result, the PCRF interacts with the PGW through Gx interface for setting the policy rules 

and receive information concerning user data traffic (e.g., charging).  

PCF has several consumers to receive information (e.g., AMF, SMF, AF, Charing Function – 

CHF, UDR, NEF, Network Data Analytics Function – NWDAF). The UPF is not a direct PCF 

consumer. UPF instead will interact with the SMF. The PCF will provide the PCC Rules to the 

SMF that set the session-related parameters e.g. QoS Rules for the UE, QoS Profiles for the 

gNB, and will provide the SDF (Service Data Flow) descriptions to the UPF. The charging-

related functionality previously in the PCRF now in the PCF this functionality has been 

moved to the 5G Charging Function (CHF) that is a PCF consumer. 

Table 3 - Services produced by the PCF. 

Service Name Operation Semantics Example 
Consumer  

Npcf_AMPolicyControl Request/Response/ Subscribe/Notify AMF 

Npcf_Policy Authorization Request/Response/ Subscribe/Notify AF, NEF, NWDAF 

Npcf_SMPolicyControl Request/Response/ Subscribe/Notify SMF 

Npcf_BDTPolicyControl Request/Response NEF 

Npcf_UEPolicyControl Request/Response/ Subscribe/Notify AMF, V-PCF 

Npcf_EventExposure Subscribe/Notify NEF, NWDAF 

 

The PCF requires to interact with the AMF for checking the polices for the UE during the 

session establishment. A predefined PCC rule is by default configured in the SMF. However, 

a PCC rule can be activated/deactivated by the PCF, SMF shall decide what information has 

to be provided to the UPF to enforce the rule based on where the traffic detection filters 

(i.e., SDFs or application detection filter), traffic steering policy information and the policies 

used for the traffic handling in the UPF. PCF will request the UE profile from the UDR/UDM 

and will set the policies to the SMF. Finally, the SMF will communicate the SDF to the UPF 

through the N4 interface, dedicated to exchanges between the control plane and the user 

plane. 



 

 Page 44 of 53 D2.1 FUDGE-5G Technology Components and Platform 

PCF can be divided into microservices. PCF serves charging and policy control purposes. It is 

not mandatory to implement all services. Splitting PCF design into microservices has an 

advantage when scaling traffic volume for services. CMC’s PCF includes (cf. Figure 3-14): 

• PCC Rule service,  

• Charging Policy Service, 

• Subscriber and Monitoring service. 

 

 

Figure 3-14 - Proposed microservice-based PCF design. 

In particular, the PCC Rule Service implements the following functionalities: 

• Policy control request trigger that defines the event(s) that shall cause a re-request 

of PCC rules for the Protocol Data Unit (PDU) Session.  

• Authorized QoS per bearer (UE-initiated IP-Connectivity Access Network – IP‑CAN – 

bearer activation/modification), defines the authorised QoS for the IP‑CAN bearer 

(QoS Class Identifier – QCI, Guaranteed Bit Rate – GBR, Maximum Bit Rate – MBR). 

• Authorized MBR per QCI (network-initiated IP‑CAN bearer activation/modification), 

defines the authorised MBR per QCI. 

• Revalidation time limit defines the time period within which the SMF shall perform 

a PCC rules request. 

• Presence Reporting Area (PRA) Identifier(s), defines the PRAs to monitor for the UE 

with respect to entering/leaving. 

• List(s) of PRA elements, defines the elements of the PRAs. 

• Default Network-Based IP Flow Mobility (NBIFOM) access, the access to be used for 

all traffic that does not match any existing Routing Rule. 



 

 Page 45 of 53 D2.1 FUDGE-5G Technology Components and Platform 

• IP Index, provided to SMF to assist in determining the IP Address allocation method 

(e.g., which IP pool to assign from) when a PDU Session requires an IP address – as 

defined in clause 5.8.2.2.1 of [TS23.501]. 

• Redundant PDU Session, indicates whether the PDU Session is a redundant PDU 

Session. 

• Explicitly signalled QoS Characteristics defines a dynamically assigned 5G QoS 

Identifier (5QI) value (from the non-standardized value range) and the associated 

5G QoS characteristics as defined in clause 5.7.3 of [TS23.501]. 

• Reflective QoS Timer, defines the lifetime of a UE derived QoS rule belonging to the 

PDU Session. 

• Authorized Session-AMBR defines the Aggregate Maximum Bit Rate (AMBR) for the 

Non-GBR QoS Flows of the PDU Session. 

• Authorized default 5QI/ARP defines the default 5QI and Allocation and Retention 

Priority (ARP) of the QoS Flow associated with the default QoS rule. 

• Time Condition defines the time at which the corresponding Subsequent Authorized 

Session-AMBR or Subsequent Authorized default 5QI/ARP shall be applied. 

• Subsequent Authorized Session-AMBR defines the AMBR for the Non-GBR QoS 

Flows of the PDU Session when the Time Condition is reached. 

• Subsequent Authorized default 5QI/ARP defines the default 5QI and ARP when the 

Time Condition is reached. 

The Charging Policy Service has following functionalities: 

• Charging information, defines the containing CHF address and optionally the 

associated CHF instance ID and CHF set ID. 

• Default charging method defines the default charging method for the PDU Session. 

• PDU Session with offline charging only indicates that the “online” charging method 

is never used for PCC rules in the PDU Session. 

Finally, the Subscriber and Monitoring Service has following functionalities:   

• Usage Monitoring Control related information defines the information that is 

required to enable user plane monitoring of resources for individual 

applications/services, groups of applications/services, for a PDU Session. 

• The PCF uses the monitoring key to group services that share a common allowed 

usage. 

• Volume threshold defines the traffic volume value after which the SMF shall report 

usage to the PCF for this monitoring key. 

• Time threshold defines the resource time usage after which the SMF shall report 

usage to the PCF. 

• Monitoring time defines the time at which the SMF shall reapply the Volume and/or 

Time Threshold. 



 

 Page 46 of 53 D2.1 FUDGE-5G Technology Components and Platform 

• Subsequent Volume threshold defines the traffic volume value after which the SMF 

shall report usage to the PCF for this Monitoring key for the period after the 

Monitoring time. 

• Subsequent Time threshold defines resource time usage after which the SMF shall 

report usage to the PCF for this Monitoring key for the period after the Monitoring 

time. 

• Inactivity Detection Time defines the period of time after which the time 

measurement shall stop, if no packets are received. 

• Port number for which Port Management Information Container is provided. 

• Port Management Information Container includes Ethernet port management 

information. 

• Bridge Management Information Container includes Bridge management 

information. 

 

3.2.4.6 Session Management Function and User Plane Function for Service 

Routing on the User Plane 

This section presents a special decomposition example for a new SMF functionality which 

integrates with any existing 5GC due to the modular and flexible principles SBA brings, i.e., 

the usage of SBIs and the removal of any restrictions on what 5GC component is permitted 

to call another one. The design hereafter is based on the integration of Name-Based Routing 

(NBR) on the user plane, as described in [D1.2], and works in an over-the-top fashion of a 

5G system in the sense that it uses an already established PDU session to send control-plane 

information to the SMF via the UPF. As the proposed solution brings SMF and UPF 

functionality, this section describes both NFs combined. 

As illustrated in Figure 3-15, possible consumers for this SMF functionality, realised as a 

dedicated service, are the AF and other SMF services. The SMF_NBR then comes with an 

Ingest API offering three distinct set of primitives for: 

• Policy Control of routing HTTP-based traffic on the user plane between UEs and 

DNs. 

• Topology management to retrieve the topology NBR-enabled UPFs form. 

• UPF property retrieval, allowing more details to obtain from all NBR-enabled UPFs 

around port identifiers, NBR capabilities (e.g., NBR version or Open vSwitch version) 

or SDN capabilities (e.g., OpenFlow or P4). 

The SMF_NBR service is then composed of Path Computation Element (PCE), which 

performs basic topology management and rendezvous (registering and matching publishers 

and subscribers) tasks of NBR-enabled UPFs. A stateful database allows the two PCE 

components to operate in a stateless fashion. 



 

 Page 47 of 53 D2.1 FUDGE-5G Technology Components and Platform 

 

Figure 3-15 - Proposed microservice-based SMF and UPF for name-based routing integration on the user plane. 

The UPF itself is decomposed into a microservice, Service Proxy Controller, that controls all 

UPF instances, Service Proxies (SPs) and Service Proxy Forwarders (SPFs), that do actual 

packet handling on the user plane.  

As both SP and SPF cannot be realised in a microservice, they are not depicted under the 

“Micro-Service-Based UPF” box in the figure above. The communication between the PCE, 

SPC, SP and SPF is realised via a dedicated pub/sub protocol of NBR that operates on top of 

Layer 2 (802.3). 

To the right of the figure, both SMF_NBR and UPF_NBR interfacing with NWDAF, SMF (non-

NBR) and NRF via the 5GC’s service bus. 

 

3.3 Enhanced Service-Based Architecture in 5G and Beyond 

The design patterns described in Section 3.2 demonstrate the ability to turn a monolithic 

software into a set of independent components. These components then use a service bus 

to communicate among each other, where the service bus brings the required 

communication methods for the stateless implementation of a component to retrieve 

information, without the need to figure out from which specific endpoint to retrieve it from, 

e.g., publish-subscribe.  

What becomes apparent from these examples is the differentiation between the 5GC 

service bus and NF’s internal service bus. While the 5GC service bus follows the SBI 



 

 Page 48 of 53 D2.1 FUDGE-5G Technology Components and Platform 

specification in 3GPP (i.e., HTTP with JSON payload), the internal service bus may consist of 

a vendor-specific realisation (e.g., Kafka). 

We recall that all 5GC service bus communication can be expected to be handled by the 

SCP, if the 5GC is operating under the so-called Model C or D [TS23.501], as opposed to 

Model A and B which refer to a direct communication where no SCP is present. 

Once 5GC NFs are deployed as microservices, the importance of the SCP for the realisation 

of a 5GC service is likely to increase. Also, in the current design, the NRF is always queried 

to retrieve an IP address or FQDN of producers. Furthermore, when assessing the 

communication behaviour on the Internet, it must be concluded that the behaviour of 

explicitly addressing the SCP and then querying the NRF with a follow-up Domain Name 

System (DNS) query if an FQDN has been provided creates a triangular routing relationship 

among Consumer, SCP, NRF, and producer. When comparing this to how clients access 

services on the Internet, services are addressed directly (e.g., ieee.org). To remove the 

triangular routing relationship and to follow the semantics of how services are addressed 

on the internet, a new Model is proposed, Model E. 

 

 

Figure 3-16 - Beyond-release-17 system architecture. 

In this context, Figure 3-16 illustrates the envisaged system architecture for a beyond-5G 

system, where the SCP is the service bus across all examples in Section 3.2.4 and is not 

addressable anymore.  The final description of the envisaged FUDGE-5G evolved System 

Architecture can be found in [D1.3]. Furthermore, the non-SBI-enabled interfaces carrying 

signalling traffic into a 5GC, that are, the N2 and N4, are also routed via the SCP. Even 

though these interfaces do not utilise HTTP, any SCP should be able to route standard IP 

traffic. Furthermore, it must be ensured that access networks and UPF can resolve FQDNs 

of AMF and SMF, respectively. 



 

 Page 49 of 53 D2.1 FUDGE-5G Technology Components and Platform 

With the proposed architecture, when assessing the design patterns put into practice in the 

previous section, the differentiation of the service bus for inter-NF communication and the 

service bus for intra-NF communication may be revised. One key argument for 3GPP not to 

further decompose NFs and standardise their SBIs is to leave vendors the ability to 

differentiate themselves from their competitors through their software. However, it can be 

argued that if service routing (SCP) capabilities are made mandatory and combined with 

cloud-native 5GC orchestration capabilities, the internal service bus could leverage the SCP 

too. This of course requires all design patterns around naming of NFs, registration of these 

names against the SCP and potential isolation and QoS enforcement requirements to be 

properly defined and standardised, permitting multi-vendor deployments of a mobile 

telecommunication network. 

 

 



 

 Page 50 of 53 D2.1 FUDGE-5G Technology Components and Platform 

4 Conclusions 

To fully enjoy the benefits of numerous new use cases, vertical sectors request more and 

more the possibility to deploy and manage services that leverage 5G networks with high 

flexibility and increased automation, possibly exploiting tools and knowledge from the IT 

world on which enterprises and specialized service providers already have experience. The 

possibility of orchestrating vertical and networking services over cloud infrastructure 

answers these needs and calls for a new design of applications and network functions that 

fully embrace the paradigms of cloud-nativeness and microservices. 

In this deliverable, we reported on FUDGE-5G’s vision on such topics. We elaborated and 

discussed FUDGE-5G WP2’s list of requirements, distinguishing characteristics, and design 

guidelines and constraints for orchestrable cloud-native functionalities and microservices. 

Further, given the specific focus of the project, this deliverable presented how the paradigm 

of microservices can be ported to the design of 5GC NFs, with pros and cons depending on 

the deployment scenarios and use cases. In particular, we highlighted how the definitions 

given by 3GPP of the 5GC NFs and their services are not sufficient to yield a straightforward 

and clear decomposition of such functions into actual microservices. As reasonable, if we 

think of the role and goals of a standardization body, a further design effort is left to the 

implementers of 5G systems. So, FUDGE-5G proposed in this document its view on the 

decomposition of a set of exemplary network functions, based on the reported criteria and 

approaches. 

The presented methodologies and challenges were derived from current state-of-the-art 

methodologies and technologies, as well as from the direct experience of FUDGE-5G’s 

partners on the field. Both theoretical and practical guidelines were proposed, with the aim 

of defining a framework that can be inherited by researchers, architects, and developers 

while designing microservice-based (network) functions. It is apparent that the described 

experiences strengthen the demand for a more open programmable and vendor-

independent and telco-oriented cloud-native framework. 

 



 

 Page 51 of 53 D2.1 FUDGE-5G Technology Components and Platform 

5 References 

[Cen+22] M. Centenaro et al., “Prospects on the adoption of (micro)service-based 
architecture principles in 5G systems,” preprint, under review for 
publication, 2022. 

[Consul] Consul. https://www.consul.io/  
[CNCF] CNCF, “Cloud native network function working group charter.” [Online.] 

Available: 
https://github.com/cncf/cnf-wg/blob/main/charter.md 

[D1.1] FUDGE-5G, “Technical blueprint for vertical use cases and validation 
framework,” deliverable 1.1, Feb. 2021. [Online.] Available: 
https://fudge-5g.eu/download-file/493/zIrbJ2b9meNEGKKXwkEV 

[D1.2] FUDGE-5G, “FUDGE-5G platform architecture components and interface,” 
deliverable 1.2, Aug. 2021. [Online.] Available:  
https://fudge-5g.eu/download-file/455/UBFW5Rja2ByFBkQdYkQd  

[D1.3] FUDGE-5G, “FUDGE-5G platform architecture final release,” deliverable 1.3, 
July 2022. 

[D2.1] FUDGE-5G, “FUDGE-5G technology components and platform – interim 
release,” deliverable 2.1, Aug. 2021. 

[D2.2] FUDGE-5G, “FUDGE-5G unified service based architecture platform,” 
deliverable 2.2, July 2022. 

[D2.5] FUDGE-5G, “FUDGE-5G technology components and platform final 
release,” deliverable 2.5, Nov. 2022. 

[dDWZ20] R. de Jesus Martins, A. Galante Dalla-Costa, J. A. Wickboldt, and L. 
Zambenedetti Granville, “SWEETEN: Automated network management 
provisioning for 5G microservices-based virtual network functions,” 16th 
International Conference on Network and Service Management (CNSM), 
2020. 

[DWWN20] K. Du, X. Wen, L. Wang, and T.-T. Nguyen, “A cloud-native based access and 
mobility management function implementation in 5G core,” 2020 IEEE 6th 
International Conference on Computer and Communications (ICCC), 2020. 

[Eva04] E. Evans, “Domain-Driven Design,” Addison-Wesley, 2004. 
[KVM] Linux, Kernel Virtual Machine. 

https://www.linux-kvm.org/page/Main_Page  
[IFA014] ETSI, “Network Functions Virtualisation (NFV) Release 3; Management and 

Orchestration; Network Service Templates Specification,” ETSI GS NFV- 
IFA 014. [Online.] Available: 
https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-
Reports/NFV-IFA%20014v4.2.1%20-%20GS%20-
%20Network%20Service%20Templates%20Spec.pdf 

https://www.consul.io/
https://github.com/cncf/cnf-wg/blob/main/charter.md
https://fudge-5g.eu/download-file/493/zIrbJ2b9meNEGKKXwkEV
https://fudge-5g.eu/download-file/455/UBFW5Rja2ByFBkQdYkQd
https://www.linux-kvm.org/page/Main_Page
https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-IFA%20014v4.2.1%20-%20GS%20-%20Network%20Service%20Templates%20Spec.pdf
https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-IFA%20014v4.2.1%20-%20GS%20-%20Network%20Service%20Templates%20Spec.pdf
https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-IFA%20014v4.2.1%20-%20GS%20-%20Network%20Service%20Templates%20Spec.pdf


 

 Page 52 of 53 D2.1 FUDGE-5G Technology Components and Platform 

[Ish+22] A. Ishaq et al., “Service-based management architecture for on-demand 
creation, configuration, and control of a network slice subnet,” 2022 IEEE 
International Conference on Network Softwarization (NetSoft), 2022. 

[MB20] R. W. Macarthy and J. M. Bass, “An empirical taxonomy of DevOps in 
practice,” 2020 46th Euromicro Conference on Software Engineering and 
Advanced Applications (SEAA), 2020, pp. 221-228. 

[Mic22] Microsoft Developer Division, .NET, and Visual Studio product teams, 
“Architecting Cloud Native .NET Applications for Azure,” 2022. [Online.] 
Available:  
https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/ 

[NFV12] ETSI NFV ISG, “Network Functions Virtualisation An Introduction, Benefits, 
Enablers, Challenges & Call for Action,” SDN and OpenFlow World Congress, 
Darmstadt, Germany, Oct. 2012. [Online.] Available: 
https://portal.etsi.org/NFV/NFV_White_Paper.pdf 

[NGMN22] NGMN Alliance, “Experience on cloud native adoption,” Final Deliverable 
(Approved), version 1.1, Jan. 2022. [Online.] Available: 
https://www.ngmn.org/wp-content/uploads/220128-Experience-on-
Cloud-Native-Adoption-v1.1-Final.pdf 

[Oas22] OASIS Open, “Common Alerting Protocol” v1.2, 2022. [Online.] Available: 
http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.doc 

[Ora20] Oracle, “Oracle Communications Cloud Native Core Solution,” 2020. 
[Online.] Available:  
https://www.oracle.com/a/ocom/docs/industries/communications/5g-
core-cloud-solution-br.pdf 

[OraU20] Oracle, “Unified Data Manager (UDM) User’s Guide,” 2020. [Online.] 
Available: 
https://docs.oracle.com/communications/F25434_01/docs.10/UDM%20U
ser%27s%20Guide/GUID-BB291E7E-22E2-4484-A902-45F7670A53A2.htm 

[Prometheus] Prometheus. https://prometheus.io/  
[Res18] E. Rescorla, “The Transport Layer Security (TLS) protocol version 1.3,” IETF, 

2018. 
[Sam20] Samsung, “Cloud Native 5G Core,” 2020. [Online.] Available: 

https://images.samsung.com/is/content/samsung/p5/global/business/net
works/insights/white-paper/cloud-native-5g-core/Cloud-Native-5G-Core-
Samsung-5G-Core-Volume-2.pdf 

[Soe+18] T. Soenen et al., “Insights from SONATA: Implementing and integrating a 
microservice-based NFV service platform with a DevOps methodology,” 
IEEE/IFIP Network Operations and Management Symposium (NOMS), 2018. 

[SOL005] ETSI, “Network Functions Virtualisation (NFV) Release 3; Protocols and Data 
Models; RESTful protocols specification for the Os-Ma-nfvo Reference 
Point,” ETSI GS NFV-SOL 005. [Online.] Available : 
https://www.etsi.org/deliver/etsi_gs/NFV-
SOL/001_099/005/03.05.01_60/gs_NFV-SOL005v030501p.pdf 

https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www.ngmn.org/wp-content/uploads/220128-Experience-on-Cloud-Native-Adoption-v1.1-Final.pdf
https://www.ngmn.org/wp-content/uploads/220128-Experience-on-Cloud-Native-Adoption-v1.1-Final.pdf
http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.doc
https://www.oracle.com/a/ocom/docs/industries/communications/5g-core-cloud-solution-br.pdf
https://www.oracle.com/a/ocom/docs/industries/communications/5g-core-cloud-solution-br.pdf
https://docs.oracle.com/communications/F25434_01/docs.10/UDM%20User%27s%20Guide/GUID-BB291E7E-22E2-4484-A902-45F7670A53A2.htm
https://docs.oracle.com/communications/F25434_01/docs.10/UDM%20User%27s%20Guide/GUID-BB291E7E-22E2-4484-A902-45F7670A53A2.htm
https://prometheus.io/
https://images.samsung.com/is/content/samsung/p5/global/business/networks/insights/white-paper/cloud-native-5g-core/Cloud-Native-5G-Core-Samsung-5G-Core-Volume-2.pdf
https://images.samsung.com/is/content/samsung/p5/global/business/networks/insights/white-paper/cloud-native-5g-core/Cloud-Native-5G-Core-Samsung-5G-Core-Volume-2.pdf
https://images.samsung.com/is/content/samsung/p5/global/business/networks/insights/white-paper/cloud-native-5g-core/Cloud-Native-5G-Core-Samsung-5G-Core-Volume-2.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/03.05.01_60/gs_NFV-SOL005v030501p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/03.05.01_60/gs_NFV-SOL005v030501p.pdf


 

 Page 53 of 53 D2.1 FUDGE-5G Technology Components and Platform 

[TS23.501] 3GPP, “System architecture for the 5G System (5GS),” TS 23.501. [Online.] 
Available: 
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetai
ls.aspx?specificationId=3144 

[TS23.502] 3GPP, “Procedures for the 5G System (5GS),” TS 23.502. [Online.] Available: 
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetai
ls.aspx?specificationId=3145 

[TS28.541] 3GPP, “Management and orchestration; 5G Network Resource Model 
(NRM),” TS 28.541. [Online.] Available: 
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetai
ls.aspx?specificationId=3400 

[TS29.509] 3GPP, “Authentication Server Services,” TS 29.509. [Online.] Available: 
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetai
ls.aspx?specificationId=3343 

[Wig] A. Wiggins, “The 12 Factor App Methodology.” [Online.] Available:  
https://12factor.net 

 

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3145
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3145
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3400
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3400
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3343
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3343
https://12factor.net/

