

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement No 957242

Deliverable D2.2

FUDGE-5G Unified Service Based
Architecture Platform

Version 1.0
Work Package 2

Editor Zoran Despotovic

Status PU

Delivery date June 2022

© FUDGE-5G project consortium partners

Ref. Ares(2022)5502768 - 01/08/2022

 Page 2 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

Versioning and Contribution History

Description Contributors

0.1 ToC, first version HWDU

0.2 General resource architecture description HWDU

0.3 Resource scheduling architecture description HDWU

0.4 Scheduling evaluation HWDU

0.6 Service routing detail HWDU

0.7 Architecture requirements, microservices considerations IDE, ATH

0.8 Internal and external review UPV

0.9 Improvements addressing the reviews ALL

1.0 Final version - submitted HWDU

 Page 3 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

List of Authors
Authors Partner

Zoran Despotovic, Artur Hecker, Dirk Trossen, Karima Saif Khandaker HWDU

Sebastian Robitzsch IDE

Nicola di Pietro, Daniele Munaretto ATH

José Costa-Requena CMC

Thanos Xirofotos UBI

Kashif Mahmood TNOR

Filippo Rebecchi THA

Hergys Rexha AAU

Pousali Charkaborty, Marius Corici FHG

Peter Sanders O2M

List of Reviewers
Reviewers Partner

Josep Ribes Rodríguez-Moldes UPV

Bessem Sayadi Nokia Bell-Labs

Acronyms
5GC 5G Core

API Application Programming Interface

CB Cell Broadcast

 Page 4 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

NF Network Function

NPN Non-Public Network

NRF Network Resolution Function

PLMN Public Land Mobile Network

RS Resource Scheduler

SBA Service-based Architecture

SCC Service Chain Controller

SCP Service Communication Proxy

UPF User Plane Function

VAO Vertical Application Orchestrator

WP Work Package

USBA Unified Service Based Architecture

MP Management Plane

CP Control Plane

UP User Plane

RE Resource Element

RCA Resource Control Agent

SF Service Function

SR Service Router

R2R Resource-to-Resource

ROSA Routing on Service Addresses

CDN Content Delivery Network

SAR Service Address Router

SFC Service Function Chain

 Page 5 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

FQDN Fully Qualified Domain Name

CNF Cloud-native Network Function

 Page 6 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

Executive Summary
This deliverable presents a possible realisation of the enhanced unified service based
architecture. The key contribution of the deliverable is an attempt to bring in unification in
all architectural aspects of the 5G and beyond mobile networks. The central part of this
unification is a “general resource” with a set of well-defined properties, connects in a robust
and scalable manner with other resources in the network, exposes its properties and
enables hosting higher level services in a dynamic manner. This dynamic hosting of services
is a key feature, which this deliverable is focusing on. It is based on proper scheduling of
service requests to the resources, hosting them and having enough capacity to satisfy these
requests in an SLA compliant manner.

 Page 7 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

1. Introduction 8

2. Architecture Requirements 9

2.1. FUDGE-5G Architecture Requirements 9

2.1.1. Components to be considered 9

2.1.2. Exposed platform component interfaces 10

2.2. Architectural Advances towards Unified Service-Based Architecture 10

2.2.1. Unification Scope and Architectural Extensions 11

2.2.2. Scaling considerations 12

2.2.3. The impact of microservices 13

2.2.4. User plane considerations 13

3. Developed Unified Service Based Architecture (USBA) 15

3.1. USBA High level description 15

3.1.1. Used technologies 17

3.1.2. USBA and its components 18

3.1.3. USBA and its capabilities/services 20

3.1.4. USBA and derived resource requirements 21

3.2. Formal USBA presentation 22

3.2.1. General Resource Stub 22

3.2.2. Databases and repositories 25

3.2.3. Interface descriptor 25

3.2.4. Service Routing 28

3.3. USBA Realization – Scheduling Aspects 31

3.3.1. Service Routing as a Routing on Service Addresses (ROSA) Shim Layer 31

3.3.2. Runtime Scheduler 36

4. Performance Evaluation 39

4.1. Runtime Scheduler 39

5. Conclusion 45

6. References 46

 Page 8 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

1. Introduction

Work Package (WP) 2 is chartered with the implementation of FUDGE-5G components and
interfaces defined in the architecture WP, WP1. WP2 is organised across the five tasks:

• T2.1: Unified Service Based Architecture Platform.
• T2.2: LAN in 5G Environments.
• T2.3: Cloud Native Service Orchestration.
• T2.4: Disintegration of Network Functions as Micro-Services.
• T2.5: Platform Continuous Integration in a Sandbox Environment.

Unlike other tasks, T2.1 (Unified Service Based Architecture Platform) takes a more
futuristic view and implements a component, resource scheduling namely, that is not meant
to be deployed as part of the FUDGE-5G system in the addressed use cases. Instead, this
component is expected to play a critical role in the enhanced SBA architecture, which is
more appropriate for beyond 5G network, or even 6G.

On the one hand, resource scheduling is supposed to bring in efficiency in the operation of
mobile networks. This is a first and natural conclusion that comes with an attempt to
dimension the network not for the peak load of every service type that has to be supported,
but to multiplex these various services onto available resources and drive their execution
such that their service level agreements remain satisfied. On the other hand, as this
deliverable describes, service scheduling is a crucial step towards turning the mobile
networks into service execution platforms, a long desired goal of mobile network operators.

This deliverable takes the standpoint that besides service scheduling, network unification is
the other necessary ingredient. Unification is in this deliverable meant as a rather broad
term, it applies to all resources in the network. Precisely, no resource (type) (e.g. wireless
link, i.e. wireless access nodes) is given a special treatment, and thus no architectural
decision is made that favours a resource or type. Instead, all resources are equal, they
connect in a robust resource mesh, disseminate their properties to a set of network control
points and expose appropriate APIs that enable, among others, service deployment and
execution.

Not that we used the word scheduling above, as opposed to orchestration. We are not
focusing on orchestration in this deliverable. Orchestration is essentially a network
management concept, whereas we want to focus here on network operation at a finer
granularity level, on its runtime (of both control plane and data plane). To illustrate,
orchestration should be equivalent to a decision to build a highway between two regions or
cities, along with gas stations and other accompanying infrastructure. Scheduling would
then pertain to decisions for every single car, which lane(s) and gas station(s) to use at any
moment such that an appropriate metric is optimal.

 Page 9 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

2. Architecture Requirements

2.1. FUDGE-5G Architecture Requirements
This section describes the FUDGE-5G requirements towards a system architecture that
supports unified methods and procedures of a Service-Based Architecture (SBA).

2.1.1. Components to be considered
As introduced in D1.2 [10] and illustrated in Figure 1, FUDGE-5G introduces a dedicated
platform layer between the infrastructure and services. The functionalities of the platform
layer are routing, orchestration, telemetry and slicing, and is collectively referred to as the
Service-Based Architecture (SBA) platform. As services operating “on top” of the platform
utilise the platform functionalities through well defined, open and programmable APIs
(dotted lines in Figure 1), the proposition for unification can be directly derived from the
platform layer.

Figure 1: FUDGE-5G System Overview [10]

As such, the components illustrated in the system overview of D1.2 are the components
under consideration for this deliverable, namely:

• Routing
• Provisioning & Lifecycle Management

 Page 10 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

• Telemetry and
• Slicing

While orchestration of is not of concern for the system architecture of a mobile
telecommunication system (i.e. standardising this within 3GPP SA groups), as well as slicing
capabilities of a 5G Core Network, the considered components in this Deliverable are
Service Routing with input from Telemetry. The rationale to focus on those two components
is as follows: in a public cloud, that comes as an Infrastructure-as-a-Service (IaaS) or
Platform-as-a-Service (PaaS) offering, the tasks of routing and orchestration is offered as
part of the IaaS or PaaS package. Through descriptors and web APIs resources are
configured accordingly and the services and functions deployed in these environments do
not have to worry about how packets are routed and how the virtual instances get deployed
and lifecycle managed. As monitoring is a key capability for lifecycle management decisions,
the capabilities of collecting data points from deployed services and functions. Finally, when
interpreting slicing capabilities as a task of resource isolation and QoS enforcement, there
is numerous areas which are either outside of 3GPP’s scope or not defined (yet). And as
3GPP’s 5G System specification (23.501) already defines the Service Communication Proxy
(SCP) as well as the Network Data and Analytics Function (NWDAF), the focus for a unified
SBA platform is put on the components Routing and Telemetry in this deliverable.

2.1.2. Exposed platform component interfaces
As illustrated in D1.2 and describe beforehand, the FUDGE-5G platform layer exposes
programmable and open APIs towards the service layer for all platform components (dotted
lines in Figure 1). To support programmable Routing and Telemetry, the interfaces to do so
are defined in D2.5 (to be published in November 2022) and described in their functionality
in more detail in D1.3 (the updated architectural deliverable due in July 2022). In essence,
the Routing component offers an open and programmable interface for services to
programmatically change the routing behaviour of the platform, in particular for stateless
application protocols, e.g. HTTP. The interface also allows to define any desired affinity
between two service instances, where an affinity is defined by the routing layer to keep the
exchange of messages between a specific set of two service instances. Also, the routing
policies can be set such as shortest path routing or constraint-based shortest path routing.

The Telemetry component also offers an open API for data ingest in a time series fashion.
While agnostic to the actual data points themselves, the Telemetry components requires
an implicitly known information model across all services to form a unified representation
of data points and the ability to run analytics over. More information on that can be found
in D1.3.

2.2. Architectural Advances towards Unified Service-Based
Architecture
This section presents the rationale behind the architectural advances towards a unified
Service-Based Architecture and the work conducted in FUDGE-5G to achieve that.

 Page 11 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

2.2.1. Unification Scope and Architectural Extensions
Unification shall be understood as an attempt to streamline the methods and procedures
within a 5G system without allowing any permutation. The ultimate purpose for the
presented unification herein is to evolve SBA to enable greater flexibility for operators in
deploying and operating a mobile telecommunication network with software components
from different vendors. In order to define the scope for an architectural system unification,
a reference system architecture is required as the foundation. 3GPP’s System Architecture
Working Group 2 (SA2) [11] serves as the reference architecture. This architecture is
illustrated in Figure 2 and illustrates 5G Core Network Functions (NFs) in dark green. All NFs
with a non-numeric interface name offer a Service-Based Interface (SBI) which is
characterised by a (by 3GPP) well defined HTTP-based API with JSON-encoded payload.

Figure 2: 3GPP’s 5G System Architecture in Release 17 [12]

The scope of unification in relation to routing and telemetry concerns the 5G system
components Service Communication Proxy (SCP) and Network Data and Analytics Function
(NWDAF). As will be described in further detail in D1.3, the SCP as well as the data collection
capability of the NWDAF are positioned as part of the FUDGE-5G platform and made
mandatory for all services (5G Cores) to be used. The resulting unified system architecture
is illustrated in Figure 3 and has the following changes towards a unified Service-Based
Architecture:

• The SCP is not a Network Function any longer that can be addressed explicitly
• The NWDAF is split into a Network Monitoring Function (NWMF) and Network

Analytics Function (NWAF)
• The discovery of NF instances or NF sets is removed from the NRF [12], allowing the

SCP to schedule all HTTP transactions based on available resources. However, in order
to obtain the Fully Qualified Domain Name (FQDN) used in a deployment that
identifies a Network Function, the Who Am I Function (WAIF) has been introduced and
fully decoupled from the NRF, allowing it to be placed inside the platform.

• Allowing the SCP to route N2 and N4 traffic between ANs and AMF as well as UPF and
SMF, respectively. Furthermore, it is enforced that ANs and UPFs must address their
peers (AMF and SMF) through FQDNs instead of IP addresses. Thus, FUDGE-5G can

 Page 12 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

ensure cloud-native procedures for the orchestration of Enterprise Services. For 5GCs
this results in no post-deployment operations and/or configurations of AN, AMF, SMF
and UPF when it comes to finding the addressing identifier of the peers they aim to
reach.

Figure 3: Proposed Beyond Release 17 System Architecture

When mapping the proposed system architecture from Figure 3 to the FUDGE-5G system
from Figure 1, the NFs SCP, WAIF and NWMF are part of the platform layer and come with
every deployment of the SBA platform (Figure 4).

Figure 4: Applied System Architecture to FUDGE-5G Platform

2.2.2. Scaling considerations
SBA is built upon two core requirements: 1) the ability to vendor-multiplex the deployment
of a 5G system and 2) the ability to scale the 5G system with the demand across several
locations (cloud regions). While physical capacities have finite upper limits, the deployment
of a mobile telecommunication network with all its software components is still subject to
network planning with regards to dimensioning the various components, including the 5G
Core. While this task and the resulting effort can be justified by the deployment of a national
Public Network, it becomes inevitably harder to justify in a Private Network setting due to
the significant different requirements for each Private Network environment and the ability
to potentially deploy Private Networks for a much shorter timeframe. Furthermore, with
traffic demands expected to further increase in an exponential fashion and the desire to

 Page 13 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

optimise operations for a greener operation of a mobile network, optimisations around
energy consumption and energy efficiency do require a flexible, scalable and programmable
system.

FUDGE-5G sees SBA and the unification work presented in this deliverable as a key
contribution towards a more flexible approach beyond PaaS and data centre-centric
technologies, such as Kubernetes or OpenShift, to deploy and operate a mobile
telecommunication system. In particular the ability to offer location- and resource-aware
orchestration and routing capabilities, fine-tuned towards the telco domain, is at the core
of the unification efforts and considered as the evolution of SBA.

2.2.3. The impact of microservices
As outlined by NGMN’s project “Future Networks Cloud-Native Platforms” [13], the
evolution from Physical Network Functions (PNFs) to Cloud-Native Network Functions
(CNFs) is mainly driven by the cloudification of Network Functions in the way they are
deployed into an infrastructure and how the Network Functions are implemented in
software. For CNFs, the adoption of the 12-factor app methodology is seen as the set of
design patterns for software engineering to transform a monolithic software into a set of
microservices. The ultimate outcome of a microservice-based software realisation is a
higher number of executables that have a small code base (lines of code) and can ideally
operate in a stateless fashion. Ultimately, this allows to scale the number of microservices
of the same type with the demand of incoming requests, allowing to keep the entire service
the set of microservices implement always up and running.

In the perspective of deploying 5G core networks as services within the proposed
framework, FUDGE-5G is specifically addressing the problem of re-designing 5G core
networks with a microservice-based approach. This entails the decomposition of 5G core
network functions into actual microservices, an activity addressed within T2.4 and reported
in D2.4. From the architectural point of view, such a decomposition is not trivial, because it
requires the identification of dependencies among each functionality offered by a 5G core
network function, and the separation and conglomeration of such functionalities into
independent “clusters” that are eventually programmable as actual microservices. In
particular, as further outlined in D2.4, there is not a one-to-one mapping between the
services produced by each 5G core network function as defined by 3GPP (TS23.501) and a
coherent decomposition of such a function into microservices.

As microservices exchange information among each other to offer the intended service, the
routing of messages among them as well as the decision which instance to choose from a
set of available microservices of the same type must be addressed. This is what the work in
this deliverable addresses as a proposition of the Service Communication Proxy.

2.2.4. User plane considerations
Extending FUDGE-5G’s architectual advances of the Control Plane to the 5G User Plane
requires rather disruptive changes to 3GPP’s architecture, in particular on the signalling
procedures on the Control Plane. As any service routing capability wihtin the SCP will not

 Page 14 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

be of concern to 3GPP’s standardisation efforts, it is a less intrusive effort to introduce these
changes. 3GPP’s User Plane however is fully controlled by the 5GC and any on-path routing
approach demands radical changes to all architectural components that play a role on the
routing decision for User Plane packets. Therefore, the 5GC must offer the ability to support
the required signalling on the Control Plane to achieve that (N1 for the UE and N4 for the
UPF) as well as making decisions about routing decisions in a distributed fashion on the “on-
path” components, if needed.

For instance, the support of Name-Based Routing on the User Plane (described in D1.2 [10])
has been designed to require almost no changes on the 5G Control Plane. Instead additional
methods and procedures on the UE, UPF and SMF have been proposed to operate on top
of established 5GLAN-based PDU sessions. However, when integrating any service routing
solution on the 5G User Plane with proper support of the entire 5G system, the current
protocol stack of the User Plane requires either heavy signalling between UE, UPF and gNB
with the 5GC or a radical change of the protocol stack. As illustrated in Figure 5, the N3
interface between the gNB and UPF uses the GTP-U protocol to map PDU flows to UEs and
to control their QoS requirements. Any changes to the PDU flow between a gNb and UPF
requires an update of the GTP-U information on the gNB and the UPF via the AMF and SMF,
respectively.

Figure 5: Protocol Stack of 5G User Plane

Furthermore, the inter-UPF interface (N9) and UPF-DN interface (N6) also have their own
IP routing layer with potential VLAN/VXLAN or L2/L3 VPN configurations for added slicing
and/or security considerations by the operator. If local break-out points are configured by
the operator it must be ensured that the 5GC can freely move PDU flows to different UPFs
and DNs without changes to the underlying transport network.

The last architectural consideration for the 5G User Plane is Device-to-Device scenarios.
While UEs can communicate to each other via the UPF as their anchor point (or multiple
UPFs interconnected via N9), 3GPP is also working on scenarios where a UE uses another
UE to reach the gNB (called sidelink). If service routing capabilities are brought to the User
Plane, these scenarios pose further challenges to allow any unified service routing
capability, as presented in this deliverable.

 Page 15 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

3. Developed Unified Service Based Architecture (USBA)

3.1. USBA High level description
The main purpose of the Unified Service Based Architecture (USBA) is to create a dynamic
operational resource control environment to efficiently run mobile network services, such
as per 3GPP 5G specifications and its typical implementations and beyond 5G.

Before we start, it is worthwhile to define a number of terms, as they might slightly differ
from what the reader is used to. The first notion is the notion of System, notably the system
under consideration. While we generally consider mobile telecommunication systems, in
this text, we mainly refer to an important constituting part of the whole, notably to the
mobile core network system (the so-called 5G Core, 5GC), providing different services to
the RAN, to UEs but also to the mobile network operator. We notably concentrate on the
"Service Based architecture", which, in Rel15, is only concerned with the Control Plane of
5GC. What is important to observe is that by changing the notion of the system under
consideration, we also change the semantics of both services and of constituting modules.

Second, for the core network realization, since 3GPP Rel15 (TS23.501), the notion of
"Network Function" (NF) has become common. Technically, this term is not very precise, as
such NFs are actually not functions, but implementation modules of the 5GC, together
realizing different services consumed by its various users as explained above, i.e., by the
other parts and strata of the overall mobile telecommunication system (e.g. by the RAN) or
by the subscriber UEs or by mobile network operator (management services). All NFs
together constitute the overall Rel15 Core (and notably its user, control and management
planes) and realize different parts of the overall required functionality, i.e. of the overall
expected service. Herein, some NFs directly map to expected services, e.g. UDM
implements major parts of the subscriber management services. Others, like AMF,
implement only a part of the overall mobility services, with the more important part being
implemented in the RAN's gNB. Note that NFs themselves can be of different realizations:
while some NFs can be monolithic, some others can actually be distributed systems per se:
e.g., while an SMF could be a monolithic entity tying a part of session control at one
particular realization point, a UDM NF could be realized as a distributed data base system
(DBMS). In particular, for monolithic NFs it is quite usual and useful to raise the question of
the number of running instances, i.e. of the number of active entities of this particular type.
In particular with the increase of popularity of virtualization in the realization, where many
NFs are implemented as containers or virtual machines, it has become quite simple and
common to add and to remove NF instances to /from the running network.

The name USBA leans itself to 5G Rel15 SBA (TS23.501). However, while SBA is an
architecture strictly limited to network functions and service interfaces of the control plane
of the core network of the operator, with only very rudimentary resource mappings (e.g.,
as per NRF: NF type to URL list), the proposed USBA:

 Page 16 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

• Is not limited to either core or control plane, but, instead, explicitly regards every
mobile network function as a service element to be run on some resource. (The exact
meaning of the term resource, as we use it in this deliverable, will be explained shortly,
see Section 3.1.2). With this, USBA can support different elements from the mobile
network, including MP, CP, UP, RAN (as, for example, O-RAN), and even elements
rather pertaining to the implementation of the mobile network (e.g. as per 3GPP CT4
or proprietary), such as security gateways (SeGW) and proxies (e.g. SCP).

• Includes explicit considerations for both network functions (i.e., service elements) and
the resources that these functions run upon. Herein, USBA handles both resources and
service elements on top of those resources with the same dynamics, i.e. it includes
considerations for both compute and networking resources, and it allows both
network functions and the underlying resources to be dynamically added and removed
from the network. This accounts not only for unstable, virtual and mobile resources
but also for the mutual dependency of resources and services that run on top of these
resources (as discussed later).

• Supports runtime service scheduling, i.e., beyond pure directory mappings, USBA is
explicitly capable of diverting the incoming service requests to respectively suitable
network service instances in runtime and within service request constraints. Here,
“suitable” means that the selected service instance with high probability:

o is reachable for the request originator with the current resource and network
function situation,

o is running and available,
o yields the best known service quality.

• Optionally can support/include network verification means, conflict resolution means
and network garbage collection.

USBA is able to account for the heterogeneity (different capacities in terms of storage,
networking compute; different capabilities; different purposes; different needs; different
natures of implementation), dynamics (mobility provoked through physical movement like
e.g. in Cell on Wheel (COW), changes in configurations, stability over time e.g. provoked by
activation-creation or deactivation-removal) of both resources and different functions
running on top of those.

The heterogeneity of the considered resource pool is mainly due to the needs of the very
different types of functions in the operational mobile network (e.g. packet processing
functions, flow payload processing functions, session tracking functions, directories, data
bases, security functions including dedicated per-packet processing and stateful tracking).
While the dynamics of the resources is typically provoked through external influence (e.g.
by third party providers such as energy providers, physical resource owners, by errors,
failures and overloads), USBA accounts for the mutual dependency of service elements and
the underlying resources. While it is straightforward to see the dependency of the running
service element on the hosting resource, it is often overseen that a service element can
alter the reachability, visibility, capability or capacity of either the hosted resource or many
other resources by creating, diverting and blocking service loads. Consider e.g. a SeGW

 Page 17 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

element blocking all uplink traffic of a particular type or traffic to particular address ranges;
this would effectively change capacities or reachability of some resources.

While USBA as such clearly distinguishes functions and resources, note that this does not
preclude the usage of function-dedicated resources in the implementation, typically in
situations, where it is more suitable (where the whole resource is the service function, e.g.,
sensors and actuators) or required for better performance (e.g., particular accelerators, like
in dedicated packet processors, NPUs for ML processing, etc).

3.1.1. Used technologies
USBA accounts for a modern ICT landscape, typically consisting of some mix of the following
resources:

• Physical resources such as spectrum, cables, network connections, fiber, switches,
routers, NAS boxes, packet processors, compute accelerators spread over some
territory in form of interconnected data centers, cabinets, base station poles, etc.

• Virtual resources, obtained through some form of host virtualization technologies on
physical resources or groups thereof, such as virtual machines (VMs), containers,
virtual switches, virtual routers, virtual channels, lines or connections.

Generally, USBA expects resources to be basically controllable by some technical means. In
practice, USBA considers that it is authorized to (has credentials) and can operationally
access (there is either existing physical or USBA-controlled logical connectivity to) some
control API of each respective resource. This also explains what is meant with controllable
network links, which, per nature, are passive.

More precisely, USBA only considers resources that can be controlled and simply disregards
resources, which are not visible or not active from its point of view, i.e., which it cannot at
least monitor. All these resources are considered in the resource pool, and the purpose of
USBA is to assure that these remain controllable at any moment in time in spite of resource
churn and provided service configuration and load changes.

Herein, the actual implementation of the resource control API is out of scope of USBA and
could be substantiated by e.g.:

• Direct, resource-local control means, with resource itself offering an API that enables
control of various its aspects, e.g. through the operating system means or by explicit
hardware integration.

• Indirect, remote control means, which might use some form of connection and
protocol to control the respective resource aspects. Such protocols can include but are
not limited to various management protocols (e.g., SNMP, NETCONF, WBEM). In
management slang, in this case, the controlled resource is the Managed Object at the
respective Manager. This second way might be required sometimes but is actually
suboptimal, as it might incur additional limitations and latency.

Note that the virtualization technology is explicitly accounted for by USBA as an important
enabler. Indeed, one of the purposes of USBA is to support the dynamics of the resources
precisely because USBA acknowledges that with modern technologies (e.g., IaaS) resources

 Page 18 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

could be themselves provided as a service (by a third party, i.e. public cloud, or by the same
provider, i.e., private cloud). Note that modern virtualization environments export explicit
(runtime) control APIs for all the obtained virtual leases/resources (e.g. to VPNs, to VMs,
containers, etc. – cmp. e.g. OpenStack, VMWare offerings, etc). This is something that USBA
is specifically designed to be able to seamlessly integrate and make use of.

At the same time, USBA does not rule out physical resources. The opposite is the case:
modern “programmable” network gear offers explicit and standard control APIs (e.g.
OpenFlow [17], I2RS [18], P4 [2]). Depending on the setup (authorizations and credentials,
system integration), USBA can either consider the respective controller (e.g. the OpenFlow
controller) as the API to all of the controlled switches, or it could be used to provide the
control connections from the Controller to the Switches, both of which become USBA
Network Functions in this view. Other network-controllable physical resources can be used
as well.

As USBA generally supports resource dynamics, it can support mobile (moving) resources
and churn at the resource layer. To do this, USBA generally uses many principles of self-*
systems. It is per itself conceived as a distributed system, tries to avoid single point of
failures, requires only minimal initial configuration and, with only this minimal configuration
(essentially representing the security association) features self-bootstrapping and self-
maintenance of its components over the lifecycle.

USBA integrates the different control means in a uniform fashion seeking to get a uniform
API to various resource types in a systematic manner. Note that in doing so, USBA-uses a
holistic system approach: its own means and resource consumption are always explicitly
considered as part of the operations on the very same resource pool, i.e. of the same
system. Accordingly, all USBA control channels are “in-band”, i.e. provisioned through and
by the means of the controllable resources from the very same controlled resource pool.
Thus, all compute operations of USBA itself are instantiated as services on top of the same
resource pool. Finally, USBA overheads (costs in terms of energy, additional latency, loads
on links or on compute nodes) are always considered in the overall service optimization.

Consequently, for the service to be provided, USBA cannot support service elements, the
hosting resource of which is not visible or appears as passive to USBA (a cable, a non-
managed bridge, etc.). By insisting on having explicit handles on all resources involved into
the considered service delivery, USBA is distinct from pure overlay solutions, which
concentrate solely on the obtained virtual elements. USBA notably supports “underlay-
aware” overlay solutions and assumes that it can act on both the resource and the service
layers. However, USBA is a real extension to the overlay approach: if all considered
resources are virtual, then USBA can be essentially equivalent to a “blind overlay”, even
though it would still distinguish resources from the services.

3.1.2. USBA and its components
As shown in Figure 6, USBA distinguishes the following layers and components:

 Page 19 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

Figure 6: USBA Layers

• Infrastructure layer: in USBA, the infrastructure layer consists of “Resource Elements”
(RE) (1) (pairwise) interconnected by Links (2). Besides, there are External Interfaces
(3), connecting some REs to non-USBA elements (i.e., outside of the system). This is
shown in Figure 7.

o All REs in USBA are network nodes.
o A Link in USBA is some form of connection between REs.
o External Interfaces are some form of connectivity of REs with or to elements

outside of the considered USBA system instance.

The infrastructure layer of USBA (and notably the RE / Link representations) is not an actual
part of the system, but rather a resource / hardware abstraction that USBA uses to unify all
different resources.

Figure 7: Infrastructure Layer of USBA

• System Kernel layer: the main part of USBA is a distributed resource control system,
consisting of “Resource Control Agents” (RCA), control channels between some of
them and a set of distributed protocols. Herein, both RCAs and Control Channels are
always using resources of the Infrastructure layer (REs and Links). In the simplest view,
each RCA runs on an RE, and Control Channels are paths between RCAs consisting of
at least one Link and an arbitrary number of REs. The System Kernel of USBA is self-
organizing, which means that the distributed algorithms are mostly running without
any human intervention.

o An RCA is the main component of USBA and has two “faces”. On the one
hand, an RCA is a handle to a considered resource element and its

Infrastructure

System Kernel

System APIs

Services

USBA System

Resource Elements (REs)
Links among REs
External Interfaces

Controller(s)
Control Channel

Control / User Development Kits

Control / User Applications

O
rc

he
st

ra
to

r

Not part of
USBA

 Page 20 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

configuration. Hence, RCA can map incoming requests to the local resources.
On the other hand, an RCA is a peer in the USBA system, involved in the self-
organization of the system and contributing to the basic USBA services in a
distributed manner. Hence, it maintains some local awareness (neighbours,
etc.) and uses this knowledge in the system-wide distributed protocols.

o The required distributed protocols include a resource control plane routing
and a distributed scheduling. In addition, RCAs can span a distributed object
store.

• System API layer: this layer provides a uniform system API to the individual resources
and also to the basic USBA system capabilities to any consuming application/service.
It notably provides different families of API calls, which will be further described
below.

• Services layer: the USBA service layer distinguishes resource control services and
resource usage services. The former are resource control applications, which can alter
the way or formulate rules on how to best use the resources, e.g. for particular hosted
usage services. These “usage services” are essentially microservices, i.e., typically
service function components of the mobile system.

3.1.3. USBA and its capabilities/services
The Resource Usage services of the USBA Service Layer essentially constitute the user
applications. In the particular FUDGE-5G case, these are service functions and service
elements of the mobile system generating requests to and loads at the resources. In the
simplest case, a mobile system service function (e.g. a core network NF) could be directly
considered a resource usage service of USBA, executed in one USBA RE as a process.
However, other deployment/integration scenarios are supported: the main difference from
the resource usage services in USBA and the actual mobile system functions (e.g. 5G NFs) is
that, in addition to atomic modules, mobile system functions in USBA can also be
implemented as compositions of several basic resource usage services or as distributed
interconnections of many resource usage service instances.

USBA provides basic support for these Usage Services, both explicitly and implicitly. Explicit
support requires the use of the particular USBA calls. Implicit support can be implemented
by formulating per app policies, constraints and optimizations (e.g. in form of traffic
selectors, request treatment rules, service budgets, etc.). These rules can be formulated
“manually” by the system administration (as a configuration). In USBA, they can be
autonomously upheld by dedicated resource control services for different “usage
scenarios”.

These resource control services or apps can be programmed and deployed on the system
along with the “unsuspecting” user apps. The resource control services hence are part of
the autonomous system understanding and can be used to enrich or alter the USBA system
so as to provide additional system-wide or dedicated capabilities, extending or customizing
the basic capabilities of the USBA for particular service functions.

 Page 21 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

To simplify the development of the service level apps, at its System API layer, USBA offers
four basic API families:

• SF to SF communication calls
• Job scheduling calls
• Flow scheduling calls
• Storage placement calls

Using these calls, it is possible to provision both SFs, their shared data and communications
between different SFs in a coordinated manner and to keep track of all allocated / executed
items throughout the runtime. By defining scheduling policies, system-wide prioritization
and optimization can be achieved directly by the existing USBA means. Additional Resource
Control Services could introduce further coordination, e.g. network garbage collection or
resource conflict resolution means.

USBA autonomically spans a distributed system over all the resources in the resource pool.
To achieve this, USBA uses highly scalable distributed mechanisms, notably for routing and
load balancing. Therefore, USBA per se yields a flat, non-hierarchical system, with vertical
hooks into the considered resources. Since these vertical hooks can reach REs at any level
of realization, USBA achieves unification of resource control: it represents all controllable
resources albeit at different levels and in different authoritative domains and of different
natures, as one flat system with a common API, readily available for control and usage.

Note however that USBA as architecture is not limited to flat systems, because USBA readily
supports recursion: if required (e.g., if the authorizations to directly control resources in
some pool cannot be obtained), a whole distributed resource pool managed by an USBA
instance 1 could be represented as, e.g., a single controllable RE in an USBA Instance 2,
using, e.g., a particular resource control application in that same instance 1. Hence, USBA is
capable of building hierarchical systems as well. However, USBA is not limited to hierarchies
as a means for scalability improvement.

3.1.4. USBA and derived resource requirements
The main abstractions for resource description used in USBA are REs and Links.

USBA Link is a network link or a logical connection, a tunnel or an inner-host virtual link
between two REs. The active control of any Link requires an RCA, which can be exploiting
any available network control point. Since a link is attached to a RE, ideally, a Link is
controlled by RCAs of the connected REs.

RE represents any network resource with some forwarding, computing or storage
capabilities. In practice, a RE could be a switch, a router, a leased line, a VPN connection, a
server, a rack, a VM, a container, a network device, a NAS, a whole DC or all resources of a
global company. USBA poses no requirements as to the size, addressing, position, form,
stability, connectivity or resource posture of a RE. It could be distributed or atomic, virtual
or physical, on a service layer or deep in the infrastructure. The only requirement is that any
RE be network controllable (directly or indirectly). Hence, any given RE can be quite limited
or very powerful in each individual dimension, but it must be “active” to be visible and

 Page 22 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

controllable. Since resource control is holistically considered part of the overall system,
although a given RE could refuse any (further) allocations on any of these dimensions, none
of these dimensions can have a zero capacity for an unused RE.

Ideally REs would onboard native USBA RCAs, because otherwise the corresponding RCAs
need to be deployed elsewhere and might need to use adapters and wrappers; the usage
of RCAs as an active agent is a powerful means to achieve unification, still wrappers and
adapters can incur additional limitations and delays. Deployment of RCAs is usually not a
problem for virtual elements.

3.2. Formal USBA presentation

3.2.1. General resource stub
Figure 8 depicts a general resource element stub. The left side shows its logical architecture,
and the right side a possible implementation architecture based on the Docker virtualization
engine. The high level logical architecture resembles the contemporary computer
architectures. It has network access hardware such as network interfaces, forwarding logic
(which can be implemented either as a hardware unit, e.g. flow tables, or a software unit,
e.g. as part of software switch module). It contains a storage unit (e.g. external hard disks
or a storage-area network) and a general purpose compute unit, which together provide a
general computing context for a set of possibly diverse applications, running on top.

It is critical to understand that this is indeed a logical architecture, physical realizations of
which can actually range from an OpenVSwitch, over a single PC to a whole data centre. All
of those should be in our opinion viewed from the same angle, as resources which can do a
(set of) specific task(s). That is the unified view we are insisting on throughout this
deliverable.

Figure 8: General resource element stub

Common to all resource elements is that they have an owner and they are managed by that
owner. Again, be it a single router, a server, virtual machine, or a whole data centre, there

mgIntf Forwarding Ports extIntf

Forwarding Logic

Storage Computing Kernel

App1 App2 AppN

RE

Logical Architecture

Host Server

Docker Container (RE)

Docker Engine

Host OS

Bins / Libs
mgIntf

O
pe

n
vS

w
itc

h
(A

pp
)

extIntf

App1 App2

O
VS

 P
or

ts
 o

n
BR

Docker Container (RE)

Implementation Architecture

 Page 23 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

is an owner who can configure the resource. The owner can, for example, connect it to
another resource he or she owns.

The critical part of resource element is what we call Resource Control Agent (RCA), cf. Figure
9. As indicated in the figure, it spans the forwarding logic and the computing kernel of the
resource elements, but also interacts with the applications by providing appropriate API
calls, as we will see shortly.

Figure 9: Resource Control Agent (RCA)

Essentially, RCAs in all REs collaborate and create a distributed system that represents what
we call System Kernel. The right side of Figure 9 gives the RCA architecture. We’ll now
describe the main modules in the RCA architecture.

The bottom part in the RCA architecture stack is named Service Routing. That is a protocol
(in fact a protocol suite, as will be seen shortly in Section 3.2.4) that enables service
invocation protocols among the REs to realize the peer interaction patterns shown in Figure
9. One might be tempted to think of typical OSI layer 3 protocols here plus name resolution
systems like the DNS, but they are in our opinion highly inappropriate for this type of task.
The missing features are automation, robustness to failures, scalability, etc. In other words,
we need way more scalable, autonomous (configuration-free) and robust protocols to
enable any-to-any communication among the REs. As indicated on the right side of the
figure, this connectivity may be used as control channel (in a controller – controlee
deployment) and manual configurations of this (typically out-of-band) control channel, as
is the case in current control models, is highly inappropriate. The result of this control plane
setup is a network as shown in Figure 10, in which every RE can communicate with every
other RE. This network we call “slice 0”, a self-organizing and always available slice, which
makes the basis of our system kernel.

mgIntf Forwarding Ports extIntf

Forwarding Logic

Storage Computing Kernel

App1 AppN

RE

Logical Architecture

RCA

......

Service Routing (Comm.)

Message Dispatcher / Protocol Processor

DB Handler

RCA

Local Control

Local RE Monitoring
/ Allocating

Init. Configuring

Local RE Interface

Peer Interaction

Remote REs’ Status
Synchronization

RE Role Selector

Access Security
Control

Distributed
Task

Scheduler

RCA Architecture

System Hypervisor

Controlling Base
Ctrl. Channel,
U

P, CP

System APIs

 Page 24 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

Figure 10: Resource-to-Resource Network

Building on the established control plane connectivity, the Peer Interaction module within
the RCA integrates a couple of basic functions that serve the purpose of communicating
with other RCAs, those residing in other resource elements in the network, to make various
important, system level decisions. For example, an RE might be a controller, while other REs
are just “normal” REs. That decision is made (or information disseminated) by these
modules communicating with each other. It is not necessary that a single RE is a controller,
the model presented readily embraces the setups in which a given RE takes over a specific
role in a distributed controller, even mixing the controller and controlee roles.

Figure 11: R2R Protocol Suite

From another angle, resource elements can be said to run an R2R protocol suite, which is
depicted as a protocol stack in Figure 11.

The Local Control module of RCA controls the local resources – forwarding, storage and
computing. It monitors them, performs various configurations and resource allocations, etc.

The Distributed Task Scheduler module, taking the central part in the RCA architecture from
Figure 9, is of particular importance for us in this project. This component has been
designed, developed and tested in this project, within a particular RCA context, that of
Service Router namely. The scheduler is responsible for shrinking the set of locations where
a specific task can be executed to a set of location where it can be executed within particular
constraints (e.g. time). Note that the scheduler is just an RCA module, such that the
schedulers in all RCA taken together constitute a distributed scheduler, i.e. cooperate to
make appropriate scheduling decisions.

RE To other
domains

To Externals

extIntf

mgIntf

mgIntf

mgIntf
mgIntf

RE

RCA

RCA

RCA

RCA

RE

RE

RE Slice 0



Infrastructure

Service Routing
Protocol

RE Status Sync
Protocol

RE Role Selection
Protocol

Task Distributed
Scheduler Protocol

D
is

tri
bu

te
d

D
B

H
an

dl
er

 P
ro

to
co

l

R2R Protocol Suite

 Page 25 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

3.2.2. Databases and repositories
RCA architecture, shown in Figure 9, depicts also a DB Handler. Normally, the storage units
presented in REs (cf. Figure 8) are just raw storage. The DB handlers within RCAs operate at
higher semantic levels and are supposed to manage these storage units such that they
together form a distributed database which provide access to all information the
applications and various RCA modules happen to need.

For example, if RCAs have flat IDs and control plane routing is based on these IDs (routing
on flat labels), then a side result of this control plane connectivity is a distributed hash table
(DHT), a distributed storage system which enables finding data based on their IDs, such as
for example their hashed values. If that is the case, local DB handlers are supposed to
resolve DB queries by comparing the data ID in the query and the ID of local RCA and then
make decision whether to access the local storage to fetch the data (in case of a match) or
to forward the query to a next hop otherwise, i.e. forward the query to the hop whose ID is
closer to the queried ID.

Certain (complex) queries will require aggregation or fusion of data from multiple REs, i.e.
involvement of multiple RCAs. In the said DHT example, a range query (all IDs in a certain ID
range) may span multiple RCAs. Coordination among them is needed in that case. For
instance, the RCA closest to the lower bound in the specified range may take over the
coordination and recursively compose the final reply to the querying application.

3.2.3. Interface descriptor
Figure 12 presents RCA internal architecture, emphasizing this time the system level API
calls, which are available to the applications (e.g., network functions, micro-services, etc.)
There are four families of APIs. These are:

• Job scheduling calls
• Flow scheduling calls
• App to App communication calls
• Storage placement calls

The two lines connecting the applications and the local control module, respectively, the
remote RCA, are supposed to emphasize the distributed nature of the APIs and the entire
system. Some API calls can possibly be satisfied by the local resource, while in reality
majority of them will require help of remote resources, i.e. their RCAs. For example,
executing a complex data query (e.g. querying for a range of data IDs) will require
coordination of the local resource and a set of remote ones. Scheduling a job will typically
involve multiple resources, installing a flow is its nature a task that spans multiple resource
elements, etc. This local-remote coordination, i.e. distributed operation is illustrated also in
Figure 12.

 Page 26 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

Figure 12: RCA Architecture and API Calls

Figure 13: Distributed SDK Platform

In addition, Figure 13 illustrates that the system operates as a distributed SDK platform,
which is transparent to the upper layers (i.e. the distribution of the platform) and provides
them high-level atomic operations, including both control level and service level ones. All,
or at least most of the functional modules of RCA are used for realization of this SDK
platform.

To illustrate the provided APIs, it is best we walk through a number of concrete examples.
To start, create_job(name, job_descriptor, RE_ID) creates a job with a given name
at a specified RE, where the job is fully described (including the code to run, or its location)
by the provide descriptor. This call is normally not directly called by applications. Assume
that an application is a network function, which is about to make a call to another network
function (how this call exactly looks like is not important at this moment). This call is trapped
by the system kernel, which extracts the parameters of the call and, in collaboration with

Service Routing (Comm.)

Message Dispatcher / Protocol Processor

DB Handler

RCA

Local Control

Local RE Monitoring
/ Allocating

Init. Configuring

Local RE Interface

Peer Interaction

Remote REs’ Status
Synchronization

RE Role Selector

Access Security
Control

Distributed
Task

Scheduler

RCA Architecture

UNICON System Hypervisor

Co
nt

ro
lli

ng
 B

as
e

Ct
rl.

 C
ha

nn
el

UNICON System APIs

Job
Scheduling

Flow
Scheduling

App2App
Comm.

Storage
Placement

Remote
RCA

RE To other
domains

To Externals

extIntf

mgIntf

mgIntf

mgIntf mgIntf

RE RE

RCA

RCA

RCA

RCARE

RE
Slice 0
Interface

Remote APIsLocal
APIs



Infrastructure

 Page 27 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

the scheduler, creates a call to a remote resource where the requested NF will be run. A
similar scenario would happen in case of communication of micro-services within one
network function, etc. Once the create_job returns, the parameter of the original call are
forwarded to the destination RE_ID for execution. The entire process of creation of a new
job should be transparent to the applications above the system kernel.

create_SFC(name, job_descriptors[], RE_IDs[]) is a call to create a service
function chain consisting of an array of job descriptors and RE IDs where these jobs should
run. Normally, it is a sequence of create_job calls (it can be, in fact, executed in parallel)
followed by setting up the state in the concerned resource elements that enables
forwarding of data through the chain.

Jobs and SFCs are terminated by appropriate terminate calls with the parameters that
match job IDs, which are normally returned by the job (or SFC) creation calls.

To better understand the APIs related to the job creation and termination, one can think of
similar calls in Apache Spark1 or Databricks2. The main difference to what we present here
lies in the realization of scheduling (e.g. we deal with a general network topology, as
opposed to data centre, normally assumed “controlled” as opposed to “managed”
environment, etc.) rather than the offered APIs.

Storage handling APIs should at the minimum provide calls to put and get data items. For
example put(data_item), replication=1) permits storing a data item in the
distributed data storage. This basic calls can be further extended with various filters. For
example, one can specify a desired replication factor (at how many different nodes the item
will be stored) or in appropriate way limit the set of nodes where the item can be stored
(e.g. distance from the caller, capabilities of the storage node, certain policies, etc.).

Similarly, there is a get(data_item_ID) call which returns either the location, a reader,
or similar, of the data item with the given ID. As in case of a put, various extensions and
refinements of this basic data retrieval operation are possible. In particular, it is critical to
support more complex queries, such as range queries, or filter the queried data based on
more complex set of attributes rather than just an ID.

The final piece in our unified architecture are services, which run on our resource elements
in the application space. We distinguish between network control services and network
data services. This is shown in Figure 14 (cApp and dApp, respectively).

1 https://spark.apache.org/
2 https://databricks.com/

 Page 28 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

Figure 14: RCA and Network Services

3.2.4. Service routing
As can be seen in Figure 12, service routing forms a key part of the USBA in that it flexibly
distributes service invocation among distributed network locations. In the following, we
outline key aspect for this service routing that shape the design for efficient realizations of
it.

3.2.4.1. Key aspects of flexible service routing in USBA

We can observe from the evolution of network functions to micro-services, as also
discussed in the previous sections, that there are a number of key aspects to consider when
designing solutions for flexible service routing:

• Services may be distributed: While the point-of-presence (PoP) of the current Internet
is prevalent in provisioning services, following the cloud model, many of the
envisioned beyond 5G use cases result in a significantly larger distribution of services
in different network locations. Edge sites with limited capabilities will be increasingly
utilized to provide services to clients.

• Service workload may fluctuate: The distribution of services across often smaller edge
sites also leads to a higher fluctuation of workload, where sites may become
overloaded quickly and ‘closer’ sites (in terms of network topology) may not be the
right choice in a routing decision from a client to a suitable service instance.

• Service selection is highly service-specific: Selecting one of possible many service
instances is not just a matter of “one size fits all” criteria. The possible diversity of
deployment aspects, such as hardware differences in edge sites, software capabilities
etc. leads to often highly service-specific aspects for choosing one instance over
another.

mgIntf Forwarding Ports extIntf

Forwarding Logic

Storage Computing Kernel

cFM cCM

RE

Logical Architecture

RCA

APIs

cAAAdNF
1

dNF
k

cAppdApp

…

 Page 29 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

• Service selection must adhere to transaction semantics: When thinking of traffic
steering, there is no relation between the typical ‘unit’ of decision making, namely a
packet, and the transaction semantic that drives a relation between a client and a
service instance. The latter is captured in a service transaction that is entirely
dependent on the application semantic when it comes to length (in time) and number
of packets created during the transaction. When performing traffic steering decisions,
this affinity to a selected service instance is crucial to maintain to avoid unnecessary
costs imposed on the service infrastructure for maintaining state information across
possibly distributed network locations.

• Services may be highly dynamic in their selection criteria: When assigning requests
to specific service instance, we can observe a possibly high dynamicity when doing so.
This may either stem from mobility, e.g., of client moving, or from workloads changing,
as discussed above. Latency here is crucial, where the budget for transaction latencies
can often not accommodate much latencies stemming from communication. This begs
the question how suitable current models of traffic steering through indirection
points, such as the DNS or load balancers or similar, are; an aspect we discuss below
in Section 3.2.4.4.

3.2.4.2. Design goals

Before presenting our realization of service routing capability in USBA, let us outline the
main design goals:

• Enable service-specific traffic steering: Constraints for routing traffic should not be
limited to network metrics like delay or bandwidth. Instead, services should be able to
define multiple service-specific constraints, either realized through a multi-optimality
routing solution or through a more direct, request-level and possibly compute-aware
request scheduling method for selecting one of possibly several service endpoints
[14][15][16]. The expected benefit is to reduce service completion time, while
reducing messaging overhead.

• On-path traffic steering to reduce service latencies: Existing solutions, most notably
the DNS resolution process with subsequent IP routing, relies on indirection points for
the traffic steering decision. This adds significant latency to the initial request but also
when wanting to re-assign a client to another service instance, which requires
repeating those indirection steps more frequently. Instead, the goal for service routing
is to perform those ‘resolution steps’, i.e. the assignment of a service to a specific
service instance, on-path from the client to the selected service instance.

• Support short-lived and long-running interactions: The duration of service
interactions with a selected service endpoint depends on the specific service. Any
solution must support short-lived as well as long-running interactions with any
(dynamically) selected service endpoint.

• Bound routing tables: Insights from previous work in information-centric networking
(ICN) have shown the strain on routing tables for similar routing approaches. Any
service routing solution must improve on this, reflected in its domain-local service
routing capability, supported by its IP-based interconnection to other service routing
enabled domains.

 Page 30 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

• Preserve communication confidentiality: Due to the often sensitive nature of service
interactions, routing on service addresses (ROSA, to be explained in Section 3.3.1) must
support communication confidentiality, while also allowing for single packet flows
through an optimized security handshake.

• Access beyond single domain: Although we see USBA being initially deployed in a
single domain, access to services in remote USBA domains and the Internet should still
be supported.

• Coexistence with IP routing: Service routing does not replace IP routing, but actively
uses its extension capability in the form of extension headers, while also foreseeing
services still being exposed via existing DNS-based methods.

3.2.4.3. Expected benefits of service routing

The benefits of service routing are as follows:

• Indirection through the DNS is not used anymore, leading to faster initial request
completion and faster indirection.

• On-path traffic steering can realize scheduling decisions that improve latencies and
system evaluations compared to off-path solutions such as the DNS, as evaluated in
Section 4.1.

• Service addresses can be described as so-called structure binary names, enabling
secure validation of service announcements and therefore providing a secure
alternative to the administrative domain name assignment of the DNS. Further, secure
delegation is supported when chaining keys used to secure service announcements.
This leads to appealing security capabilities at this low level of the system.

• Service relations are inherently multicast by nature, i.e. service selections may not just
select a single service instance but a group of instances, including randomized groups
for diffusion purposes. This may be an appealing capability for services such as
Distributed Ledger Technologies that rely on unicast-based diffusion solutions today,
leading to significant overhead created by them.

3.2.4.4. What is wrong with off-path solutions?

Standard DNS resolutions in the public Internet experience latencies of 15 to 45ms per
resolution (for well-known domain names, i.e. those that can be resolved by the first hop
DNS server), while additional load balancing in solutions such as Global Server Load
Balancing, used in most CDN systems, require often up to 100ms latency for an assignment
of a suitable service instance. These latencies are caused not just by the additional signalling
(which involves crosses the wireless access link from the client to the network ingress at
least four times, often more) but also the application layer processing of most of the
required functionality, such as the DNS database lookup for resolution or the HTTP-level
indirection for load balancing. Going through these processes frequently is prohibitive since
it would inevitably impact service completion time but also increase complexity of the
overall system.

On-path resolution, as suggested by service routing, instead performs the necessary
mapping from service addresses to IP locator on-path, i.e., when the service request
traverses from the client over the ingress to the selected service instance. When

 Page 31 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

implemented at, e.g., Layer 3 or Layer 3.5 (as IP extension header), the processing is
significantly faster, even in SW-based solutions with Linux fast path operations, while data
operations are limited to routing table lookups with additional selection algorithms in case
of more than one service instances being available. The evaluation in Section 4.1 shows the
impact of changing from off- to on-path in terms of latency and system utilization.

3.3. USBA Realization – Scheduling Aspects

3.3.1. Service routing as a Routing on Service Addresses (ROSA) shim layer
In the following, we outline key aspects of realizing service routing through an approach we
call routing on service addresses (ROSA), where service information is directly used on-path,
as outlined before, to steer traffic to the appropriate service instance in one of possibly
many network locations. In the following, we focus our presentation on the general system
overview, followed by the new message types introduced, and the forwarding operations
performed on-path, concluded with client changes that are required to support the novel
service routing capability. We will here focus on scheduling-based traffic steering methods,
presented in Section 3.3.2, while ROSA also supports a fully routed traffic steering, which is
left out from this deliverable.

3.3.1.1. System overview

Figure 15 illustrates a ROSA-enabled limited domain [3], interconnected to other ROSA-
supporting domains via the public Internet through the Service Address Gateway (SAG).

Figure 15: Service Routing System Overview

ROSA endpoints start with discovering their ingress Service Address Router (SAR), e.g.,
through extensions to DHCP or similar approaches. Furthermore, we also foresee that an
endpoint may discover different ingress SARs for different categories of services, each SAR

 Page 32 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

being part of, e.g., a category-specific ROSA overlay, which in turn may be governed by
different routing policies and differ in deployment (size and capacity). Within the original
SBA framework, the SAR is closest in functionality to the SCP while performing an on-path
discovery of the suitable endpoint on-path rather than through the off-path NRF function
in SBA.

Services are realized by service instances, possibly at different network locations. Those
instances expose their availability to serve requests through announcing the service address
of their service to their ingress SAR.

To invoke a service, a ROSA client sends an initial request, addressed to a service, to its
ingress SAR, which in turn steers the request (possibly via other SARs) to one of possibly
many service instances; see Section 3.3.1.3 for SAR-local forwarding operations and end-to-
end message exchange and Section 3.3.1.4 for the needed changes to ROSA clients.

We refer to initial requests as service requests, which are routed via the ROSA network. If
an overall service transaction creates ephemeral state, the client may send additional
requests to the service instance chosen in the service request; we refer to those as affinity
requests. With this, routing service requests can be positioned as in-band service discovery,
resulting in subsequent routing of direct client-service instance traffic. In order to support
transactions across different service instances, e.g., within a single DC, a sessionID may be
used, as suggested in [7]. Unlike [7], discovery does not include mapping abstract service
classes onto specific service addresses, avoiding semantic knowledge to exist in the ROSA
shim layer for doing so. The next two sections detail message types and exchanges to realize
this behaviour.

3.3.1.2. Message types

Apart from affinity requests, which utilize standard IPv6 packet exchange between the
client and the service instance selected through the initial service request, ROSA introduces
three new message types, using an IPv6 extension header (EH) [4] for extra information
required for ROSA functionalities. The messages Figure 16 highlight only the entries needed
for the specific purpose of the message, omitting other IPv6 packet header information for
simplicity. An initial prototype, developed by Huawei, uses a TLV format for the extension
header with Concise Binary Object Representation (CBOR) [6] being studied as an
alternative. The EH entries shown are populated at the client and service instance, while
read at traversing SARs.

 Page 33 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

Figure 16: Service Routing Message Types

A service address may be encoded through a hierarchical naming scheme, e.g., using the
naming conventions in [5]. Here, service addresses consist of components, allowing to map
existing hierarchies of services addresses in the Internet onto those over which to forward
packets, illustrated in the forwarding information base (FIB) of Figure 17 as purely
illustrative URLs. Components are treated as binary objects, while the hierarchical structure
allows for grouping addresses along common prefixes, reducing routing table size and
forwarding lookup times. Despite the variable length of service addresses, their explicit
structure (in the form of components) allows for efficient hash-based lookup during
forwarding operations, unlike IP addresses which require either log(n) radix tree search
software or expensive TCAM hardware solutions.

With the service announcement message, a service instance signals its ability to serve
requests for a specific service address. Section 3.3.2 outlines the use of this message in
scheduling-based traffic steering methods.

The service request is originally sent by a client to its ingress SAR, which in turn uses the
service address provided in the extension header to forward the request, while the selected
service instance provides its own IP locator as an additional extension header entry in the
service response. The next section describes the SAR-local forwarding operations and the
end-to-end message exchange that uses the extension header information for traversing
the ROSA network.

3.3.1.3. SAR forwarding engine

The SAR operations are typical for an EH-based IPv6 forwarding node: an incoming service
request or response is delivered to the SAR forwarding engine, parsing the EH to obtain
relevant information for the forwarding decision, followed by a lookup on previously
announced service addresses, and ending with the forwarding action.

 Page 34 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

Figure 17: SAR Forwarding Engine

Figure 17 shows a schematic overview of the forwarding engine with the forwarding
information base (FIB) and the next hop information base (NHIB) as main data structures.
The NHIB is managed through a routing protocol, with entries leading to announced
services.

The FIB is dynamically populated by service announcements, with the FIB including only one
entry into the NHIB when using routing-based methods (rows 0 to 3 in Figure 17).
Scheduling-based solutions (see Section 3.3.2), however, may yield several dynamically
created entries into the NHIB (items 0, 4 and 5 in Figure 17) as well as additional information
needed for the scheduling decision; those dynamic NHIB entries directly identify service
instances locations (or their egress as in item 0) and only exist at ingress SARs towards ROSA
clients.

For a service request, a longest-match service address lookup (using the Service EH entry)
is performed, leading to next hop (NH) information for the IPv6 destination address to
forward to (the final destination address at the last hop SAR will be the instance serving the
service request).

Forwarding the response utilizes the Client and Ingress EH fields, where the latter is used by
the service instance's ingress SAR to forward the response to the client ingress SAR, while
the former is used to eventually deliver the response to the client by the client's ingress
SAR, ensuring proper firewall traversal of the response back to the client. Our Huawei
prototype shows that the operations in Figure 17 can be performed using eBPF [8]
extensions to Linux SW routers.

 Page 35 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

Figure 18: Message exchange to route service request and subsequent affinity requests

Figure 18 shows the resulting end-to-end message exchange, using the aforementioned
SAR-local forwarding decisions. We can recognize two key aspects. First, the SA/DA re-
writing happens at the SARs of the ROSA shim layer, using the EH-provided information on
service address, initial ingress SAR and client IP locators, as described above. Second, the
selection of the service instance is signalled back to the client through the additional
Instance EH field, which is used for directly sending subsequent (affinity) requests via the
IPv6 network. As noted in the figure, when using transport layer security, the service
request and response will be those related to the security handshake, thereby being rather
small in size, while the likely larger HTTP transaction is sent in subsequent affinity requests.

3.3.1.4. Changes to clients to support ROSA

Within endpoints, the ROSA functionality is realized as a shim layer atop IPv6 and below
transport protocols. For this, endpoints need the following adjustments to support ROSA:

(i) Adapting network layer interface: Introducing service addresses requires changes to
the current socket interface for discovering the ingress SAR and issuing service
requests as well as maintaining affinity to a particular service instance, i.e. mapping a
service instance IP address to the initial service address. This could be achieved
through providing a new address type (e.g., ADDR_SA) during socket creation,
assigning the service address to the returned handle, while utilizing socket options to
assign constraints to receiving sockets, utilized in the announcement of the service
address.

(ii) Transport protocol integration: We see our design aligned with existing transport
protocols, like TCP or QUIC, albeit with changes required to utilize the aforementioned
new address type. For the application (protocol), the opening and closing of a
transport connection would then signal the affinity to a specific instance, where the
semantic of the ̀ connection' changes from an IP locator to a service address associated
to that specific service instance. With this, a new service transaction is started, akin to
a fresh DNS resolution with IP-level exchange.

(iii) Changes to application protocols: The most notable change for application protocols,
like HTTP, would be in bypassing the DNS for resolving service names, using instead
the aforementioned different (service) socket type. These adaptions are, however,
entirely internal to the protocol implementation. Given the ROSA deployment

 Page 36 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

alongside existing IP protocols, those changes to clients can happen gradually or driven
through (e.g., edge SW) platforms.

3.3.2. Runtime scheduler
Service request scheduling refers to the selection of the ‘best’ service instance, within the
set of active service instances, to serve a service request at runtime of the overall system.
Referring to the system model outlined in Section 3.3.1.1 and illustrated in Figure 15, this
scheduling decision is performed only at the ingress SARs, which receive the service
requests from the clients, while the remaining SARs illustrated act as forwarding nodes. The
scheduling decision is interpreted as a service request routing problem at the data plane
level.

The implemented and evaluated runtime scheduler is one that takes the computing
capabilities of the service instances in the network into consideration for the scheduling
decision. It is therefore referred to as the Compute-Aware Distributed Scheduler, or CArDS.
The objective of CArDS is to maximize the system’s processing throughput by minimizing
the (service) request completion time (as the sum of the delays at SARs and instances,
together with network propagation delays) for individual service requests.

The forwarding is realized as a two stage process. First, the ingress SAR determines all
outgoing interfaces along which an incoming service request could be sent. It then selects
the appropriate interface to be used by implementing the scheduling decisions, which is
elaborated in the following paragraphs. In essence, the SAR performs an on-path resolution
of the service identifier provided in the service request to (a direction towards) a possible
service instance; with this, the SAR has taken over the role of the DNS albeit utilizing the
compute awareness in the scheduling decision to forward packets. A forwarding SAR then
simply forwards the request to the next hop of a SAR, utilizing suitable encapsulation
techniques.

We assume that the service instances for a given service are already deployed in the
network. Furthermore, for each server in the distributed sites, we assume a total processing
capacity. We furthermore assume that any service instance for service hosted on a server
is assigned a compute unit, where the total compute units assigned to all instances hosted
on said server do not exceed the total processing capacity. We see the assignment of those
instance-specific compute units as part of the overall placement process, providing an input
into our scheduling solution. With this, each compute unit represents a normalized
processing rate that is the same across all server deployments, while the compute unit
defines the share of compute resources that the assigned service instance will receive from
its physical server resource.

Key to the compute-awareness of our solution is the mapping of compute units onto
suitable routing constraints that can be taken as input during the ingress forwarding
decision, i.e. the scheduling decision. This routing constraints are used for scheduling a
packet at an ingress semantic router to one of the possible many service instances.

For this, we assume the integration of the compute metric assignment in placement
methods and service orchestration operations. In order to turn the compute unit

 Page 37 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

assignments into routing constraints, the service orchestration flattens and joins the service
instance-specific compute units into a compute vector for a specific service identifier that
represents a set of service instances. The needed information for each service identifier,
containing each SI's locator together with the number of compute units allocated per
instance, is expressed as lower and upper sub-interval bounds in the compute vector. The
reasoning behind the use of the interval-based method in the compute vector is further
explained in the scheduling mechanism in the following paragraphs.

The compute vector then needs distribution to the network ingress points to perform
suitable scheduling operations together with the respective locator information for each
service instance for the given service identifier. Key here is that this vector is seen as being
rather stable since it is part of the overall service deployment and placement of service
instances. Hence, any change will likely happen infrequently only, if at all during the service
lifetime. As a consequence, extensions to existing routing protocols, to distribute the
computing vector among all routers, will unlikely cause much additional overhead to the
routing protocol performance. As an alternative, a service management system may directly
signal the routing information to the ingress semantic routers only.

Once an ingress SAR receives a service request, after checking for a routing table entry for
the service identifier provided in the request, the suitable next hop (or SI destination) is
selected through a weighted round robin, with the weights being the compute unit for the
service instance in the compute vector of the service identifier. The scheduling mechanism
is as illustrated in Figure 19:

Figure 19: Scheduling decision at ingress SAR

In order to avoid the need for implementing multiplications for the weights (i.e. compute
units) at the scheduling decision at ingress SA, we assume that compute units are
distributed as sub-intervals instead, with the total interval length being the sum of the
compute units (each sub-interval equals one compute unit) of all the available service
instances for the service identifier. This flattening of the weights into a vector allows for
realizing the weighted round robin through a simpler counter, k, that cycles through that
interval for any new service request that arrives at the semantic router. For every new
increment of the counter, or wrap-around once the end of the complete interval vector is

 Page 38 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

reached, the scheduling operations retrieve the next hop, i.e. service instance destination
information, for the current counter and stores its new value in the routing table to be used
for the next arriving request. Each semantic router chooses a random initial value for k,
therefore increasing the randomness between individual semantic routers.

The needed scheduling operations are limited to a routing table lookup and a cycling of a
counter over an interval (stored as part of the routing table). Technologies such as P4 [2]
can be used for realizing such operations at line speed. Using structured binary names for
the service identifier in our system allows for utilizing existing longest-prefix match
operations to determine the suitable interval in our operations, while increment operations
over such interval can be directly realized through P4 operations.

Additionally, crucial in our model is the support for instance affinity, accommodating the
likely situation that within a longer transaction (consisting of several service requests),
client-specific state is established at the service instance, such as in use cases like online
gaming, AR/VR scenarios, or also client-specific transactions in a 5G control plane. As a
result, any following request, i.e. the aforementioned affinity request, will need to be sent
to the same service instance. While a service request is directed to the service identifier as
a destination, the client will utilize the IP locator provided in the response (in addition to
the service identifier) to the original service request when addressing any following affinity
request to the same service instance. This approach positions the client as being the best
point of determining what requests belong to a longer affinity.

However, the realization of this affinity requires support at the client. This could be realized
through a dedicated socket type, alongside existing TCP, UDP, or (raw) IP sockets, managing
the mapping of an initial service request to subsequent instance requests. For this, the
socket implementation utilizes service endpoint information provided in the response to
the initial service request, i.e. the usual tuple of source and destination IP addresses and
ports, in order to form subsequent instance requests. Application libraries, such as for HTTP,
would need to be adapted to use this new socket type rather than, e.g., a TCP socket, while
applications based on HTTP would remain unchanged. Approaches relying on application
protocol specific proxies (e.g., for HTTP) could also be used, rather than change clients
directly.

 Page 39 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

4. Performance Evaluation

4.1. Runtime Scheduler
The performance evaluation for the compute-aware distributed scheduler (CArDS) [9], the
runtime scheduler described in Section 3.3.2, was executed using a custom, event-based
Python simulator. The main metric of the evaluation is the mean request completion time
(RCT), which in this case is analogous to the service completion time. It refers to the round
trip time from issuing a request at the client, processing at a service instance and being
received back at the client.

Figure 20 Evaluation network topology

Table 1 Evaluation configuration parameters

Scenario Parameter Configuration/Distribution, Value

All

Link Latencies Inter-Site: exponential with average 3000 µs
Intra-Site: exponential with average 700 µs

Topology 5 Sites, 4 Servers per Site, 1 instance per Server, 5
Ingress Nodes

1,2

Simulation Duration 10s

Network Traffic Constant bit rate: inter arrival times selected uniformly
from [2.5, 7.5] ms

Server Processing Time Uniform, [128, 192] µs

3

Simulation Duration 30 min

Network Traffic Variable bit rate: inter arrival times selected uniformly
from [1.9, 2.1] s

Server Processing Time Uniform, [1.6, 2.4] ms

 Page 40 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

1,3
Compute Capacity Dist.
Across Sites and
Instances

S0[1,2,2,3], S1[1,2,2,4], S2[2,2,3,3], S3[2,2,3,4],
S4[1,3,4,4]

2a

Compute Capacity
Distribution (Uniform
both across and within
sites)

S0[2,2,3,3], S1[2,2,3,3], S2[2,2,3,3], S3[2,2,3,3],
S4[2,2,3,3]

2b

Compute Capacity
Distribution (Imbalance
across sites, uniform
within site)

S0[1,1,1,1], S1[1,1,1,1], S2[1,1,1,1], S3[1,1,1,1],
S4[8,8,9,9]

2c

Compute Capacity
Distribution (Uniform
across sites, imbalance
within site)

S0[1,1,1,7], S1[1,1,1,7], S2[1.1.1.7]. S3[1.1.1.17].
S4[1.1.1.7]

The setup and topology are summarized in Figure 20 and Table 1. The scheduler is realized
in the ingress SARs within an ingress-based architecture. To simplify the evaluation, the
simulations were executed with a single service function sent as single packet requests.
Clients send their service requests to their corresponding ingress SAR, which selects the
instance to schedule the request to, using the mechanism (with the routing table and
counter, k) described in Section 3.3.2. The network load for each simulation is varied using
the total number of clients sending service requests. The clients are distributed equally
across the ingress SARs. The network load was varied between 20% and 110%, which are
equal to 315 and 1710 clients respectively. A 100% workload is represented by 1550 clients,
shown as a grey dotted line in the figures. The simulations were repeated to ensure a
sufficiently small 95% confidence interval, shown as lighter regions on either side of the
mean service completion time graphs in the evaluation figures. Note that cases, where they
are not visible, imply that the interval was very small. Additionally, the minimum latency
that appears to be zero is in the milliseconds range.

The first set of evaluations were performed to observe the impact of distributing the
scheduling decision, i.e. from a centralized scheduler to a distributed one and further scaling
up the extent of this distribution. The comparison made against the idealized, centralized
scheduler, which is implemented as CArDS with a single central counter, was expected to
perform the best by effectively reduce the potential of conflicting scheduling decisions,
leading to contention at the instances. As it uses single central counter, it ensures that only
one service request is scheduled to a single compute unit of an instance at a time. Based on
our results, there was only a discrepancy between the performance of the centralized and
distributed schedulers when the load was approaching the maximum capacity, where an
increase in the average request completion times of around 11.3% was observed. In all
other settings, there were negligible differences in the performance between the
distributed scheduler and the idealized, centralized scheduler. In the second part of the

 Page 41 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

evaluation, the number of ingress SARs were scaled to observe the impact of the scale of
distribution on the performance of CArDS. For each network load, we checked if that load
is better scheduled by exactly one, a small, moderate, etc. up to an extremely large set of
schedulers. The previous finding from the comparison with the centralized, idealized
scheduler applies here as well, i.e. only extreme loads cause deterioration of distributed
scheduling. As the network load approaches capacity, this deterioration is seen to grow with
the scheduling distribution scale, e.g. at 100% load compared to the centralized, idealized
scheduler, a 29% increase in RCT is observed when the scheduling decision is distributed
across a moderate number of ingress SARs, as opposed to a 11% increase for a small number
of ingress SARs. In the worst case, for the highest load and an extremely large number of
ingress SARs, the service completion times are around 50% higher than with the idealized,
centralized scheduler. Considering the extremely large number of schedulers would be
highly distributed in terms of network locations, thereby causing significant path stretch
when utilizing centralized scheduling instead, an impact on overall latency needs weighing
against the observed 50% increase in scheduling latency for distributed scheduling, since
the latter allows for avoiding such path stretch latency.

Certain deployment scenarios may not want to expose the service instances directly to
network-level routing but use DC-internal mechanisms instead. Our second evaluation
scenario takes this account by comparing CArDS original mechanism of scheduling service
requests directly to instances using their service identifiers, against a reconfigured CArDS
that schedules service requests to a data center (or site) ingress, which directs the requests
randomly to one of the instances within the DC. The DC ingress acts as a simple load
balancer, unaware of the computing capabilities of the instances, distributing the requests
to one of its instances uniformly at random. We found that this lack of compute awareness
at the load balancers has a significant impact on the request completion times and this
impact increases with an increased network load. With a network load as low as 30%, the
mean RCT of scheduling to sites is almost double that of directly scheduling to instances,
while at 80% load, this grows to more than 100 times higher. Although the sites receive
requests proportional to their compute resources, the compute-unaware load balancers
cannot distribute them to the instances according to their capabilities due to their random
nature of distribution. Furthermore, the performance of using site-specific load balancers
is largely dependent on the network topology, unlike scheduling to instances directly since
the latter simply iterates over the compute units of all compute resources irrespective of
their distribution across sites. The effect of the network topology on the performance of a
scheduler is further observed in Scenario 2 evaluations, illustrated in figures Figure 21,
Figure 22, and Figure 23.

 Page 42 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

Figure 21 RCT of Scenario 2a

Figure 22 RCT of Scenario 2b

Figure 23 RCT of Scenario 2c

In Scenario 2, the focus was on evaluating the performance of CArDS in comparison with
two other distributed, dynamic scheduling approaches, i.e. STEAM and a random scheduling
mechanism, which behaves similarly to the previously used simple load balancer,
distributing the service requests to the instances uniformly at random except that it is now
positioned at the ingress SAR. The scheduling approaches were selected as viable
alternatives to CArDS that are easier to implement and do not require additional load
information or signalling. STEAM's approach to scheduling uses load estimation and local
instance state information to perform batch scheduling at the sites. As its primary focus was
for service function chaining applications, the admission control policy module at the site
schedulers would be able to forward batches of requests to other sites when the site-local
instances were unable to serve them. We disable this admission control part since
forwarding to other instances is not supported in the ingress architecture utilized here but
rather a capability of the specific service function chaining solution into which STEAM was
originally embedded. Additionally, STEAM does not consider the concept of compute units
similar to the random scheduler. Also, as the STEAM schedulers are positioned at sites,
unlike the other two schedulers, they require the ingress nodes to forward the requests to
them, so they can schedule these requests to a local instance. For STEAM's configuration,
the ingress SARs simply forward the client service requests uniformly at random to the
different sites with large batches of 50 requests being used. The network topology and
traffic load is otherwise identical to the previous scenarios.

This scenario allows to observe the effect of factoring compute capabilities into the
scheduling decision (as opposed to load estimations), as well as performing the scheduling
at ingress nodes instead of sites. We further evaluate the impact of the compute unit
distribution across sites as well as instances within sites, on the scheduling performance.
For this, we fix the total amount of compute units across all instances to 50, while varying
the allotment of those compute units across instances and sites for the different
configurations, as specified in Table 1. While CArDS considers compute units irrespective of
their distribution in a network, both STEAM and the Random Scheduler are compute-
unaware. Although STEAM's scheduling mechanism allows it to avoid contention, it is
limited to a site, thereby being unable to influence the requests beyond the site it is
deployed at. As a result, the randomness of service request distribution across sites is
expected to have some impact on the overall request completion times for STEAM. To
reduce this impact, it requires the compute units to be uniformly distributed across sites,

 Page 43 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

which is the case with both Scenarios 2a and 2c. The Random Scheduler, on the other hand,
only considers the instances in the network, irrespective of their spread across sites, with
no concept of compute units. Considering that it uses the uniform distribution for its
random scheduling decision, it is expected to perform well in a network with a balanced
distribution of compute units across instances, as in Scenario 2a, and badly when the
compute unit distribution is skewed, i.e. with a large variance in the minimum and
maximum compute capacities, as is the case with Scenarios 2b and 2c.

In Scenario 2a, where the distribution of compute units are uniform across the sites and the
instances within the sites, all three schedulers are expected to perform well. However, as
shown in Figure 21, CArDS brings benefits by significantly reducing request completion
times in high load settings (i.e. number of clients larger than 1300). We also further
observed, in the setting with 1245 clients, the point where the Random Scheduler
performance starts to diverge from the rest, the tail is very heavy using Random Scheduler,
slightly lighter when using STEAM, while there is no tail when using CArDS. This indicates
that not only does CArDS improve on the average performance, but also significantly cuts
the tail by distributing the resources fairly among the clients.

In Scenario 2b, where the distribution of compute units is uniform within a site but
imbalanced across the sites, STEAM and Random Scheduler are performing very poorly as
depicted in Figure 22, while CArDS's performance is unaffected by the imbalance, as it is
compute-aware.

In Scenario 2c, with compute units distributed uniformly across sites but an imbalance
within sites, we observe that STEAM is able to handle resulting contention within a site,
performing similar to 2a, while Random Scheduler provides similar bad performance as in
2b. Again, CArDS outperforms both, providing a much lower request completion time at
high loads.

Figure 24 RCT for Scenario 3

To evaluate the performance of CArDS in a typical application that would benefit from
improving completion times of individual service requests across more than a single site of
service deployment, we considered a content retrieval use case for Scenario 3, which can
often be found in localized service scenarios such as those outlined in our introduction.
Content here may be video content, gaming assets (such as graphics or video snippets), or

 Page 44 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

also application updates for current mobile applications or future edge applications
provided locally within a single operator network.

In those scenarios, several replication sites may be used, while content can often be
retrieved via stateless single requests with often larger responses being returned to the
client. This is therefore an extreme scenario with scheduling being possibly performed for
individual service requests. Evaluating CArDS' performance in such use cases allows for
comparing against using long-lived approaches, typically used in application level solutions,
such as CDNs, IETF Alto, etc.

For this, we change the traffic pattern to represent real-life video streaming traffic, while
keeping the same network topology as specified in Table 1. Server processing was increased
to 600 requests per second, which simulates retrieving roughly equally sized video chunks
of 2 seconds length (a typical setting in over-the-top video platforms). As the remaining
configuration aspects neither impact scheduling decision nor performance of the scheduler,
they are not included in the scenario description. Transaction sizes were varied to represent
packet-level requests and long-lived transactions of 1 minute. Clients join the system at
different times, to simulate a more dynamic scenario compared to 1 and 2. Note that the
ultimate number of clients in the system would be as shown in x-axis in Figure 24.

When transactions maintain longer affinities, as in application level solutions, it results in
high contention and very high service completion times as shown in Figure 24. Bringing the
scheduling decision down to packet-level allows for a significant improvement in service
completion times. This translates into an improvement in overall utilization of the system
in terms of maximum supported clients as follows: assuming a chunk length of 2 seconds,
1.5 seconds can be considered a request completion time that would result in an acceptable
user experience (allotting 500ms for the remaining latencies) in terms of proper utilization
of the retrieved content at the client, e.g., for video playback. With this in mind, random
scheduling at packet-level already improves on the maximum number of clients that can be
served within the above latency by 12.5%, almost 2000 more clients, compared to the 1
minute affinity model. CArDS is able to further improve on this by serving almost 24000
more clients with the same service completion time compared to the random packet level
scheduling. Overall, with CArDS we can serve 162% more clients within the bounded latency
compared to the long-lived affinity scheduling, with improving by about 133% more clients
compared to random scheduling at packet level.

The main takeaway for Scenario 3 is that CArDS performs superior compared to long-lived
transaction solutions as well as random scheduling, even in high load settings.

We presented CArDS as a solution to integrate compute awareness with the steering of
service requests at the data plane level. Our analysis demonstrates that this integration
leads to significant performance improvements over both network-level and application
solutions, while our design-related analysis provides useful insights for deployment of our
solution. Most importantly, our solution allows for supporting up to 160% more clients in a
use case where request times are bounded by acceptable user experience; an advantage
that would significantly lower costs for service delivery.

 Page 45 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

5. Conclusion

This deliverable has discussed possible unification of the SBA and, more generally, mobile
network architecture. The central place in this unification is given the notion of a general
networked resource, from which a holistic approach to building the mobile network
architecture is taken. In a sense, the entire concept is similar to the concept of computer
architecture, which successfully operates on similar principles for more than fifty years.
When a resource (a peripheral) is added to the system, it is seamlessly interconnected with
the central processing unit and integrated in the system, its capabilities and properties are
recorded and the component is automatically ready for use. A central aspect of this
architecture is multiplexing of requests onto the existing peripherals, i.e. their scheduling
by the operating system.

Our SBA unification follows the same principles. We give the networked resources meaning
similar to that of computer peripherals, we interconnect them via a robust, resilient and
scalable fabric, we equip them with appropriate APIs, needed for their full integration in the
entire system, and we finally multiplex, i.e. schedule, the complex service requests onto the
available resource set. As this latest step, i.e. scheduling of requests, is the central aspect
of this project, and thus of this deliverable, we give it special attention and demonstrate its
operation in detail.

The deliverable thus describes in detail a possible realization of the resource scheduling
component. We specify in detail the assumptions we make (e.g. the operating
environment), its design, evaluation and implementation. Our evaluation of scheduling, i.e.
the positive and encouraging results we showed, gives hopes that the entire unification we
presented in this deliverable is the direction to follow when designing future generations of
mobile networks.

 Page 46 of 46 D2.2 FUDGE-5G Unified Service-based Architecture Platform

6. References

[1] FUDGE-5G Consortium, “FUDGE-5G Platform Architecture: Components and Interfaces”,
Deliverable D1.2. Available online at: https://fudge-5g.eu/download-
file/455/UBFW5Rja2ByFBkQdYkQd

[2] "P4 Language and Related Specifications". Available online https://p4.org/p4-spec/docs/P4-
16-v1.2.0.html , Retrieved 2 December 2019

[3] Carpenter, B. and B. Liu, "Limited Domains and Internet Protocols", RFC 8799, DOI
10.17487/RFC8799, July 2020, <https://www.rfc-editor.org/info/rfc8799>.

[4] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", STD 86, RFC
8200, DOI 10.17487/RFC8200, July 2017, <https://www.rfc-editor.org/info/rfc8200>.

[5] Mosko, M., Solis, I., and C. Wood, "Content-Centric Networking (CCNx) Messages in TLV
Format", RFC 8609, DOI 10.17487/RFC8609, July 2019, <https://www.rfc-
editor.org/info/rfc8609>.

[6] Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)", STD 94, RFC
8949, DOI 10.17487/RFC8949, December 2020, <https://www.rfc-editor.org/info/rfc8949>.

[7] Jiang, Sheng & Li, Guangpeng & Carpenter, Brian. (2020). A New Approach to a Service
Oriented Internet Protocol. 273-278. 10.1109/INFOCOMWKSHPS50562.2020.9162749.

[8] eBPF Foundation, “What is eBPF?”, available at: https://ebpf.io/what-is-ebpf/
[9] Karima Saif Khandaker, Dirk Trossen, Ramin Khalili, Zoran Despotovic, Artur Hecker, Georg

Carle. CArDS: Dealing a New Hand in Reducing Service Request Completion Times. IFIP
Networking 2022.

[10] The FUDGE-5G Consortium, “Deliverable 1.2: FUDGE-5G Platform Architecture:
Components and Interfaces”, 2021. Available at: https://www.fudge-5g.eu/download-
file/455/UBFW5Rja2ByFBkQdYkQd

[11] 3GPP, “System Architecture Working Group 2”. Available at:
https://www.3gpp.org/specifications-groups/sa-plenary/sa2-architecture/home

[12] 3GPP, “TS23.501; System architecture for the 5G System (5GS); Release 17”, 2022. Available
at: https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/23501-h00.zip

[13] NGMN, “NGMN Cloud Native Enabling Future Telco Platforms”, 2021. Available at:
https://www.ngmn.org/publications/cloud-native-enabling-future-telco-platforms.html

[14] Hantouti, H., Benamar, N., Taleb, T. and A. Laghrissi, "Traffic Steering for Service Function
Chaining", IEEE Communications Surveys & Tutorials (Volume: 21, Issue: 1, First quarter
2019), DOI: 10.1109/COMST.2018.2862404.

[15] Ruozhou Yu. R, Xue, G. and X. Zhang, "QoS-Aware and Reliable Traffic Steering for Service
Function Chaining in Mobile Networks", IEEE Journal on Selected Areas in Communications
(Volume: 35, Issue: 11, November 2017), DOI: 10.1109/JSAC.2017.2760158.

[16] Blöcher, M., Khalili, R., Wang, L. and P. Eugster, "Letting off STEAM: Distributed Runtime
Traffic Scheduling for Service Function Chaining", IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications, DOI: 10.1109/INFOCOM41043.2020.9155404.

[17] The Open Networking Foundation, “OpenFlow Switch Specification,” 2015.
[18] Alia Atlas and Joel M. Halpern and Susan Hares and David Ward and Thomas Nadeau, "An

Architecture for the Interface to the Routing System", RFC 7921, DOI 10.17487/RFC7921,
2016, < https://www.rfc-editor.org/info/rfc79219>.

https://ebpf.io/what-is-ebpf/
https://www.fudge-5g.eu/download-file/455/UBFW5Rja2ByFBkQdYkQd
https://www.fudge-5g.eu/download-file/455/UBFW5Rja2ByFBkQdYkQd
https://www.3gpp.org/specifications-groups/sa-plenary/sa2-architecture/home
https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/23501-h00.zip
https://www.ngmn.org/publications/cloud-native-enabling-future-telco-platforms.html

	1. Introduction
	2. Architecture Requirements
	2.1. FUDGE-5G Architecture Requirements
	2.1.1. Components to be considered
	2.1.2. Exposed platform component interfaces

	2.2. Architectural Advances towards Unified Service-Based Architecture
	2.2.1. Unification Scope and Architectural Extensions
	2.2.2. Scaling considerations
	2.2.3. The impact of microservices
	2.2.4. User plane considerations

	3. Developed Unified Service Based Architecture (USBA)
	3.1. USBA High level description
	3.1.1. Used technologies
	3.1.2. USBA and its components
	3.1.3. USBA and its capabilities/services
	3.1.4. USBA and derived resource requirements

	3.2. Formal USBA presentation
	3.2.1. General resource stub
	3.2.2. Databases and repositories
	3.2.3. Interface descriptor
	3.2.4. Service routing
	3.2.4.1. Key aspects of flexible service routing in USBA
	3.2.4.2. Design goals
	3.2.4.3. Expected benefits of service routing
	3.2.4.4. What is wrong with off-path solutions?

	3.3. USBA Realization – Scheduling Aspects
	3.3.1. Service routing as a Routing on Service Addresses (ROSA) shim layer
	3.3.1.1. System overview
	3.3.1.2. Message types
	3.3.1.3. SAR forwarding engine
	3.3.1.4. Changes to clients to support ROSA

	3.3.2. Runtime scheduler

	4. Performance Evaluation
	4.1. Runtime Scheduler

	5. Conclusion
	6. References

