
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021 1

Self-Learning Multi-Objective Service Coordination
Using Deep Reinforcement Learning

Stefan Schneider , Ramin Khalili , Adnan Manzoor , Haydar Qarawlus , Rafael Schellenberg ,
Holger Karl , and Artur Hecker

Abstract—Modern services consist of interconnected compo-
nents, e.g., microservices in a service mesh or machine learning
functions in a pipeline. These services can scale and run across
multiple network nodes on demand. To process incoming traffic,
service components have to be instantiated and traffic assigned to
these instances, taking capacities, changing demands, and Quality
of Service (QoS) requirements into account. This challenge is
usually solved with custom approaches designed by experts.
While this typically works well for the considered scenario, the
models often rely on unrealistic assumptions or on knowledge
that is not available in practice (e.g., a priori knowledge).

We propose DeepCoord, a novel deep reinforcement learn-
ing approach that learns how to best coordinate services and
is geared towards realistic assumptions. It interacts with the
network and relies on available, possibly delayed monitoring
information. Rather than defining a complex model or an algo-
rithm on how to achieve an objective, our model-free approach
adapts to various objectives and traffic patterns. An agent
is trained offline without expert knowledge and then applied
online with minimal overhead. Compared to a state-of-the-art
heuristic, DeepCoord significantly improves flow throughput (up
to 76 %) and overall network utility (more than 2x) on real-
world network topologies and traffic traces. It also supports
optimizing multiple, possibly competing objectives, learns to
respect QoS requirements, generalizes to scenarios with unseen,
stochastic traffic, and scales to large real-world networks. For
reproducibility and reuse, our code is publicly available.

Index Terms—Network and Service Management, Reinforce-
ment Learning, Self-Learning, Self-Adaptation, Multi-Objective

I. INTRODUCTION

Service provisioning and coordination in networks with
geographically and topologically distributed compute nodes is
an ongoing challenge [1], [2]. In edge and fog computing,
this challenge is exacerbated by limited compute capacities as
well as link delay between the nodes [2]. Furthermore, service
demand in terms of incoming flows is also distributed across
the network and varies over time. Services can consist of

Manuscript received January 28, 2021; revised April 8, 2021; accepted
April 26, 2021.

S. Schneider, A. Manzoor, R. Schellenberg, and H. Karl are with the
Computer Networks Group at Paderborn University, Germany (email: ste-
fan.schneider@upb.de). H. Qarawlus was with Paderborn University, Ger-
many, and is now with Fraunhofer ISST, Germany. R. Khalili and A. Hecker
are with Huawei Technologies Munich Research Center, Germany. We also
thank Sven Uthe for his valuable contributions to our first prototype.

This work was supported in part by the German Research Foundation within
the Collaborative Research Centre “On-The-Fly Computing" (SFB 901), the
German Federal Ministry of Education and Research under Software Campus
grant 01IS17046 (RealVNF), and the European Commission under 5G-PPP
project FUDGE-5G (H2020-ICT-42-2020 call, grant 957242). The expressed
views are the authors’ and do not necessarily represent these projects.

multiple interconnected components, which process incoming
flows. Examples are microservices in a service mesh [1],
chained virtual network functions (VNFs) in network function
virtualization (NFV) [3], or machine learning functions in a
pipeline [4]. Each component can run on any node in the
network and scale flexibly, by starting/stopping additional
instances, according to the current demand. Service coordi-
nation requires online decisions on how to scale and where to
instantiate each instance as well as how to schedule incoming
flows to these instances.

While service coordination has been the focus of intensive
study [2], [5], most existing work (detailed in Sec. II) has three
major limitations. First, existing work mostly focuses on long-
/medium-term planning how to scale and place service com-
ponents based on given service deployment requests (e.g., [6]–
[9]). In doing so, hard-wired chains of component instances
are placed in the network to process all incoming flows. This
is problematic as operational reality often diverges from any
initial plan. For example, actual service demand by users likely
differs from the expected load in a given service deployment
request. Hence, scaling, placement, and flow scheduling should
be adjusted dynamically and online according to the actual
service demand.

Second, existing approaches typically use heuristics or nu-
merical solvers (e.g., [6], [10], [11]) and rely on carefully
designed models, tailored to specific scenarios, and build on
corresponding assumptions. Applying them to scenarios with
slightly different assumptions or new optimization objectives
(e.g., for QoS) may again require time-consuming manual
adjustments by experts.

Third, these models often rely on information that is not
available in practice, such as a priori traffic knowledge. In
reality, complete knowledge about incoming traffic is not avail-
able instantly or even a priori but only after monitoring, often
done periodically (e.g., default 1 min in Prometheus [12]).
Within such a monitoring interval, numerous flows may arrive
stochastically from users at various ingress nodes and need to
be processed by service components even before information
about these flows is globally available.

To overcome these limitations, we propose a novel approach
for autonomous service provisioning and coordination using
model-free deep reinforcement learning (DRL). In our pro-
posed approach, which we call DeepCoord, a centralized DRL
agent is trained offline through interaction with the network
environment, using its previous actions and experience as
feedback. The trained DRL agent then autonomously provi-
sions services online and controls dynamic flow scheduling.

https://orcid.org/0000-0001-8210-4011
https://orcid.org/0000-0003-2463-7033
https://orcid.org/0000-0001-5028-6076
https://orcid.org/0000-0003-3248-1163
https://orcid.org/0000-0002-1691-9252
https://orcid.org/0000-0002-8343-6322
https://orcid.org/0000-0003-3604-2686

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021 2

For scalability, the agent does not decide scheduling of each
flow individually. Instead, it selects and periodically updates
scheduling rules that are deployed at each network node in
a distributed fashion and applied purely locally at runtime to
incoming flows.

Practical application of DRL is known to be challenging
and requires careful design of the corresponding observations,
actions, and reward as well as integration into the overall
system [13]. To address these challenges, we formulate a
partially observable Markov decision process (POMDP) with
observations based on realistically available monitoring data
that is only intermittently available and that contains only
aggregated, slightly delayed, and uncertain information. In
particular, DeepCoord can be used without expert knowledge
and it requires neither a priori traffic knowledge nor detailed
knowledge of the network or involved services. We use
continuous actions to allow fine-grained online control of
service scaling and placement as well as for dynamic flow
scheduling. We design the reward function to support multiple
objectives (e.g., QoS) based on available monitoring data.
Finally, we propose a framework architecture for integrating
DeepCoord with a given network environment through custom
adapters and publish an open-source prototype [14]. While
DeepCoord is trained in a centralized, offline fashion, the
trained agent can handle rapidly arriving stochastic and bursty
traffic, generalizes to new and unseen scenarios, and scales to
large, real-world network topologies while making decisions
within milliseconds.

This paper is an extension of our previous work [15]. In
this extended version, we consider QoS requirements in terms
of acceptable end-to-end delay (soft and hard deadlines) as
well as limited link capacities in addition to nodes’ compute
capacities, which further restrict the solution space and make
service coordination more challenging. We show that DeepCo-
ord adapts to these additional constraints through self-learning
without human adjustments. We also improve the support for
optimizing multiple objectives. This is challenging since com-
mon objectives are often conflicting. For example, reducing
end-to-end delay requires processing traffic close to its ingress
node, but maximizing throughput requires balancing traffic
across the entire network to utilize all available resources.
Hence, we propose different options for navigating such trade-
offs, including objective weighting or custom utility functions,
and present new objective formulations for improving QoS
and reducing costs and energy. We illustrate the benefits and
trade-offs of these objectives in our extensive evaluation on
real-world network topologies. Overall, our contributions are:
• We define the problem of online service provisioning and

coordination based on available monitoring information. We
propose different methods and example formulations for
optimizing multiple, possibly opposing objectives.

• We address the service coordination problem by formalizing
the corresponding POMDP, which we use for DeepCoord,
our novel, self-learning DRL approach based on deep deter-
ministic policy gradient (DDPG) [16].

• DeepCoord consistently outperforms existing approaches,
requiring much fewer resources to ensure high success rates
on real-world network topologies. It also generalizes to un-

seen traffic patterns, learns to optimize multiple objectives,
and scales to networks of realistic size while only relying
on information that is available in practice. Specifically, we
observe that DeepCoord reaches up to 76 % more successful
flows and more than 2x higher total utility when optimizing
multiple objectives.

• For reuse and reproducibility, we make our code publicly
available [14].

II. RELATED WORK

Service coordination is relevant in a variety of use cases
(e.g., cloud or edge computing and NFV) and has been
addressed by many researchers. Mann [17] and Hong and
Varghese [2] survey service coordination approaches for cloud
computing and edge computing, respectively. Herrera and
Botero [5] provide an overview of service coordination ap-
proaches in the context of NFV. Our proposed DRL-based
service coordination approach is not limited to any specific
use case but can be applied across different scenarios, e.g.,
in cloud or edge computing and NFV. In this section, we
discuss related work, first focusing on conventional approaches
without DRL, e.g., heuristics or mixed-integer linear programs,
in Sec. II-A. In Sec. II-B we compare existing approaches that,
similar to our proposed approach, use DRL for self-learning
service coordination.

A. Conventional Approaches without DRL

The large majority of existing research builds on con-
ventional approaches like heuristics or solving mixed-integer
linear programs. Authors often rely on unrealistic a priori
knowledge and focus on a subset of our considered service co-
ordination problem, which includes online service scaling and
placement as well as runtime scheduling of incoming flows.
For example, multiple authors [6]–[9] place services offline,
assuming full a priori traffic knowledge. Other authors [10],
[11], [18] consider online service scaling and placement but
disregard runtime scheduling of flows.

There are many, slightly varying definitions of “scheduling”
in related work [7], [19]–[25]. Here, we define flow scheduling
as a runtime decision, where (i.e. at which instance) to process
an incoming flow according to its processing needs. Similarly,
multiple authors [22], [24], [25] consider runtime scheduling
of incoming flows but assume a given fixed placement. More
related to our approach, Zhang et al. [21] consider joint online
scaling and placement of services as well as flow scheduling.
Such joint coordination is important to successfully balance
trade-offs [26], [27].

While all aforementioned approaches work well in their
considered scenarios, each approach is tightly bound to its un-
derlying assumptions. As we show in our evaluation (Sec. V),
applying such conventional approaches to scenarios with
slightly different assumptions (e.g., different, stochastic traffic
patterns) can easily lead to significantly decreased perfor-
mance. Adapting to new assumptions requires time-consuming
manual adjustments by experts. In contrast, our self-learning
and self-adaptive, model-free DRL approach learns by itself to

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021 3

jointly scale, place, and schedule in varying scenarios without
any prior knowledge.

In recent years, multiple authors proposed machine learning
for predicting required resources [28]–[30] or upcoming traffic
demands [31], which can be combined with online heuristic
algorithms for pro-active service coordination [32], [33]. We
see this as a promising, complementary research direction that
could be combined with DRL in future work.

B. Self-Learning Approaches with DRL
Luong et al. [34] survey recent self-learning DRL ap-

proaches for networking. Related to our work, multiple authors
address online service placement under changing load [35]–
[38], some considering stochastic traffic and QoS [37]. In
contrast to our approach, Pei et al. [35] rely on a simulated
copy of the network to quickly test, evaluate, and revert
different actions to ultimately choose the best one in each time
step. Furthermore, the final coordination decisions are made
by a separate heuristic. Similarly, Solozabal et al. [39] rely on
combining their DRL approach with a heuristic and restrict
their approach to service placement in networks forming
a star topology. Wang et al. [36] assume up-front traffic
knowledge per time step and equal flow scheduling between
all instances, which could lead to high end-to-end delays and
bad service quality. In contrast to our work, Xiao et al. [37]
and Quang et al. [38] process incoming flows sequentially,
making individual decisions per flow and service component.
To address resulting infeasible or sub-optimal placements, the
authors roll back and undo previous decisions [37] or apply a
separate heuristic algorithm to fix the DRL agent’s proposed
solution [38]. Making such expensive decisions per flow would
not work in our problem, where we consider rapidly arriving
flows and only delayed, aggregated, and partially observed
network state.

Instead of per-flow decisions and similarly to how we sched-
ule incoming flows, Xu et al. [40] assign different portions
of traffic to different paths. However, they focus on traffic
engineering and do not consider service scaling and placement.
The authors further assume traffic knowledge ahead of each
time step and assist their DRL agent with a heuristic. Nasir
and Guo [41] do consider delayed and partial observations but
focus on power allocation in wireless networks.

The recent work by Gu et al. [42] is most related to our
work. Like us, they consider service coordination with flow
scheduling, optimize a generic network utility, and build on
DDPG [16], which we shortly describe in Sec. IV-C. Still,
there are three main differences: 1) Gu et al. focus on compute
costs but neglect resource and communication constraints such
as node and link capacities and link delays. In contrast, we
consider such constraints to support QoS optimization and
scenarios with limited resources (cf. edge computing). 2) They
assume traffic knowledge ahead of each time step. 3) They
support their DRL approach with a custom heuristic to help
with action selection and exploration. The authors show that
both too much or too little support by the heuristic degrades
performance.

Overall, to the best of our knowledge, our work is the first to
consider online service coordination in realistic scenarios with

Fig. 1: DeepCoord periodically updates scheduling tables that
are deployed at each node in a distributed fashion. Flows con-
tinuously arrive at ingress nodes and are scheduled according
to these scheduling tables at runtime.

rapidly arriving flows and delayed, only partially observed
network state. Our model-free approach works without support
from a heuristic, which makes it more versatile and less error-
prone. We hence believe our approach to be much better
applicable to real-world systems than existing work, especially
since we do not rely on a priori information.

III. PROBLEM STATEMENT

We consider the problem of online service provisioning and
coordination in a network of geographically distributed nodes.
Here, we intend to precisely define the problem’s parameters,
decision variables, and objectives but not to provide a full
mathematical formulation (e.g., as mixed-integer linear pro-
grams). Note that our DRL approach does not require explicit
knowledge of the full, detailed network state described here.
Instead, it observes only partial and delayed information that is
available via monitoring (defined in Sec. IV-B) and implicitly
learns to adapt to a given scenario through feedback from its
actions.

A. Problem Parameters

The network G = (V, L) consists of nodes V and links L
as shown in Fig. 1. Each node v ∈ V has a compute capacity
capv ∈ R≥0. We consider a single generic resource (e.g., CPU),
which can be extended easily to multiple resource types. Each
link l ∈ L interconnects two nodes bidirectionally and has
a maximum data rate capl ∈ R>0, which is shared in both
directions. It also has a delay dl ∈ R>0 that depends, among
other factors, on the distance between the connected nodes.

Traffic arrives as many short-lived flows at ingress nodes in
the network (for example, f1– f6 in Fig. 1), e.g., representing
users or sensors requesting a service. Any node can be an
ingress node. Each flow f = (s f , v f , t f , λ f , δf) ∈ F is defined
by the service s f it requests, the ingress node v f where it
arrives, its time of arrival t f , its requested data rate λ f , and
its duration δf . There can be multiple services available in
the network, where S is the set of all available services. Each
service s ∈ S consists of a chain of components specified by
vector Cs = 〈c1, ..., cns 〉. Services may share components (e.g.,
s1 and s2 both use c1 in Fig. 1). Furthermore, a service s has

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021 4

a set of QoS requirements Θs , which need to be met to ensure
good service quality. As examples for such QoS requirements,
we consider Θs = {dsoft

s , dhard
s } with optional soft and/or hard

deadlines dsoft
s , dhard

s ∈ R≥0 ∪ ∅. Flows requesting service s
must complete before hard deadline dhard

s , defined relative
to flow arrival t f , or otherwise are dropped automatically.
Achieving an end-to-end delay within soft deadline dsoft

s is
desirable for best service quality but not imperative for flow
success.

Service components can be instantiated at multiple different
nodes; all instances process flows independently of each other.
Set C contains all available components of all services. A flow
requesting service s is considered to complete successfully if
it traverses instances of all components in Cs in the specified
order and within deadline dhard

s (if dhard
s , ∅).

B. Decision Variables and Network State

We consider scaling and placing services s ∈ S and
scheduling incoming flows f ∈ F to component instances of
the requested service over time T . To this end, we define two
decision variables xc,v(t) and y f ,c(t). Binary variable xc,v(t) ∈
{0, 1} indicates whether an instance of component c is placed
at node v at time t (placement). Instances can be placed at
no, one, or multiple nodes (scaling). Variable y f ,c(t) ∈ V
indicates at which node v ∈ V to process a flow f requesting
component c of service s f at time t (scheduling). Our approach
centrally controls scaling, placement, and scheduling rules,
which are applied locally at each node. We explain details
of how we set xc,v(t) and y f ,c(t) in Sec. IV-A.

In line with the current serverless trend, we do not explicitly
consider intra-node scaling and placement. Instead, we assume
that within a node v, which may be anything from a single
machine to a large data center, the node’s operating system or
systems like Kubernetes [43] and ElasticNFV [44] start and
scale instances of a component c transparently if xc,v(t) = 1.

Utilization of node and link resources, i.e., rv(t) and rl(t),
depend on decisions xc,v(t) and y f ,c(t) as well as flow
length δf and requested data rate λ f . Consequently, rv(t) in-
creases with the total data rate of flows processed by instances
at v and rl(t) depends on the total data rate of flows forwarded
along link l. Flows are dropped if they cannot be processed or
forwarded, e.g., because the resources of a selected node v or
link l are already fully utilized or because there is no instance
of requested component c. Depending on xc,v(t), component c
may not be available at a node v when a flow arrives to be
processed there. At this point, fetching, installing, and starting
an instance of c on demand would take considerable time, in
which the flow would likely already expire.

We further assume that a monitoring system collects and
synchronously reports metrics about each node v ∈ V in fixed
intervals of ∆ > 1 time steps. As many flows may arrive within
∆, the monitoring system only reports aggregated information
over the last interval ∆ but no per-flow details. In particular,
we assume the monitored network state to merely include
the number and aggregated rate of incoming, processed, and
dropped flows at v and the average end-to-end delay of
completed flows davg in the last ∆ time steps (from t − ∆

to t). This is in contrast to most related work, which assumes
complete per-flow and often even a priori knowledge in every
single time step.

C. Objectives

We optimize the long-term utility UT over all T time steps
that reflect the desired coordination goals. Utility UT may
consist of a single optimization objective UT = oj , a weighted
(by wj) sum UT =

∑
j wjoj of multiple objectives, or a more

complex custom utility function based on one or multiple
objectives. In our evaluation (Sec. V), we consider examples
of all three cases, detailed next.

A useful example for a single optimization objective is UT =

of where of is the total amount of successful vs. dropped flows
over T time steps:

of =
Fsucc − Fdrop

Fsucc + Fdrop
∈ [−1, 1] (1)

It encourages more successful flows Fsucc, fewer dropped
flows Fdrop, and thus higher throughput.

In practice, operators are often interested in optimizing
multiple, possibly competing objectives at once (e.g., for QoS,
energy, costs). Here, the weighted sum of objectives UT =∑

j wjoj is useful. We consider three additional objectives,
each conflicting with of :

oi = 2 ·
−

∑
c∈C,v∈V xc,v(t)
|C | · |V |

+ 1 ∈ [−1, 1] (2)

on = 2 ·
−

∑
v∈V 1{

∑
c∈C xc,v (t)≥1}

|V |
+ 1 ∈ [−1, 1] (3)

od = max
{
−1,
−davg

D
+ 1

}
∈ [−1, 1] (4)

Objective oi minimizes the total number of placed instances
(indicated by xc,v(t)) to minimize costs (e.g., for licensing).
Objective on minimizes the number of compute nodes used
for at least one instance; 1{∑c∈C xc,v (t)≥1} is 1 if an instance is
placed at node v and 0 otherwise. This may reduce costs and
energy consumption if unused nodes are turned off (e.g., in an
edge scenario). Objective od minimizes the average end-to-end
delay davg per completed flow in time T for better QoS. If no
flow is successful, davg is undefined and we set od = −1. To
ensure all objectives are in the same range [−1, 1], we scale
them by dividing by the respective maximum value. In od , we
normalize davg with network diameter D in terms of delay.
We further add 1 and cap any values below −1, which may
occur if flows traverse the entire network multiple times back
and forth due to bad service coordination (i.e., davg > D). We
investigate trade-offs between these objectives and of as well
as the impact of weights wj in Sec. V-D. Objectives of , oi, on,
and od are examples for typical optimization goals, but it is
also possible to choose and optimize other objectives based
on the desired goals and available monitoring information.

Finally, as third and most generic option, we allow defining
a custom utility function UT based on any available monitoring
information. This allows operators to define arbitrary, complex
utility functions based on their business insights. As an exam-
ple, we consider a custom utility function UT = Uf ·Ud ∈ [0, 1],

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021 5

dsoft
s dhard

s

Avg. End-to-end Delay davg

0.0

0.2

0.4

0.6

0.8

1.0

D
el

ay
 U

til
ity

 U
d

(a) Custom Utility Function

20 40 60
Total Node Capacity

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
U

f [
%

]

observing uv

not observing uv

(b) Impact of Observing Node Load

Fig. 2: a) DeepCoord supports complex custom utility func-
tions, e.g., for meeting soft deadlines. b) Delayed observations
of node load uv are not useful for DeepCoord.

where Uf =
Fsucc

Fsucc + Fdrop
∈ [0, 1] is the flow success ratio

and Ud ∈ [0, 1] the delay utility shown in Fig. 2a. The delay
utility is maximal for an end-to-end delay within the soft
deadline dsoft

s and then gradually diminishes with increasing
delay up to hard deadline dhard

s . In Sec. V-D2, we show
that DeepCoord also learns to optimize such a custom utility
function to meet soft deadlines for optimal QoS.

IV. DRL APPROACH: DEEPCOORD

We propose DeepCoord to address service coordination
using model-free DRL. DeepCoord does not know the network
topology, link delays, service or per-flow details. Instead, it
relies on aggregated yet incomplete, slightly delayed, and
uncertain information about incoming flows available through
periodic monitoring (updated every ∆ time steps). It learns
service coordination without expert knowledge from its own
experience.

We describe our service coordination approach in Sec. IV-A
and formalize a POMDP in Sec. IV-B. Sec. IV-C outlines our
DRL framework and algorithm.

A. Joint Scheduling, Scaling, and Placement

We design our approach to work for realistic, dynamic
networks with many rapidly arriving flows. Hence, making
per-flow coordination decisions centrally at the DRL agent
would be highly inefficient and not scalable for large num-
bers of flows. Moreover, it would require up-to-date, per-
flow knowledge, which is not available centrally. Instead, we
schedule incoming flows at each node immediately according
to rules that are installed at all nodes in the network. Deep-
Coord updates these rules every ∆ time steps, whenever new
monitoring data becomes available.

To this end, we introduce scheduling tables for each node
that indicate where incoming flows should be processed (simi-
lar to AWS traffic dials [45] but with dynamic rather than fixed
quotas). As illustrated in Fig. 1, each scheduling table contains
entries for every service s ∈ S and every corresponding com-
ponent c ∈ Cs (here, S = {s1, s2}, Cs1 = 〈c1, c2〉, Cs2 = 〈c1〉).
The table entries specify at which destination node to process

c by means of a probability distribution over all nodes (not just
neighbors). For example in Fig. 1, incoming flows at node v1
requesting component c1 ∈ Cs1 of s1 are scheduled according
to the probabilities in v1’s scheduling table. Here, each flow
is processed locally at v1 with 10 % probability, scheduled to
be processed at v2 with 40 %, and scheduled to v3 with 50 %.
Flows belonging to s1 that finish processing c1 at v1 and are
then requesting c2 are all scheduled to v5. We assume shortest
path routing between nodes, e.g., from v1 to v5. The same
component c1 also appears in service s2, where it could require
different scheduling. Hence, we consider separate scheduling
entries for different services in S. We assume service set S to
be rather static and contain all available services, even if they
are not currently in use. Scheduling table entries for unused
services are simply ignored. If set S does change, e.g., because
a completely new service s is released, the scheduling tables
and DeepCoord’s neural networks have to be restructured to
include s. In principle, the learned weights for S \ s could be
retained in the restructured neural networks.

By deploying these scheduling tables at each node, incom-
ing flows are scheduled immediately (in O(log |V |)) at runtime
according to these probabilities. That means, y f ,c(t) is set to
vi with probabilities given for vi and c ∈ Cs f in a distributed
manner. After deciding a destination node for processing a
flow according to the scheduling probabilities, the entire flow
is sent there. Using separate scheduling tables for each node
allows to schedule flows differently depending on where they
arrive in the network. In doing so, flows can be scheduled to
close-by nodes, reducing end-to-end delay.

We also derive variable xc,v(t) (scaling and placement) from
the scheduling tables but update it only every ∆ time steps. To
avoid dropped flows, we ensure that instances of component c
are available at every node v to which flows may be scheduled.
Specifically, we start at the ingress nodes with the first
component c1 ∈ Cs for each service s and set xc1,v(t) = 1
if there is a non-zero probability for y f ,c1 (t) = v based on
the scheduling tables. Since scheduling probabilities sum up
to one, we always place at least one instance per service
component to process incoming flows. We then continue in
a similar fashion for the next component c2, checking the
scheduling tables of the nodes where we placed instances of
c1. Based on v1’s scheduling table in Fig. 1, we would set
xc1,v1 (t) = xc1,v2 (t) = xc1,v3 (t) = xc2,v5 (t) = 1. Following this
approach, we can jointly decide flow scheduling probabilities,
scaling, and placement by periodically (every ∆ time steps)
updating the scheduling tables for all nodes. In practice, these
updates could be done consistently across the network using
SDN technology [46].

B. MDP with Partial Observability

In real networks, the full network state is huge and can
only be observed partly through monitoring. Hence, we design
a POMDP to create and periodically update the scheduling
tables as described in Sec. IV-A. Using a POMDP is novel
compared to related DRL approaches, which mostly assume
a fully observable MDP (see Sec. II). In a POMDP, an
agent interacts with an environment to obtain rewards, which

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021 6

allows the agent to learn highly-rewarded behavior. Formally,
a POMDP (O,A,P,R) is defined by observation space O, i.e.,
parts of the full network state, the agent’s action space A, the
environment dynamics P, which are typically unknown, and
the reward function R. In our approach described in Sec. IV-A,
the agent interacts with the environment every ∆ time steps. It
receives observations from the last ∆ time steps (e.g., through
monitoring), applies an action to update the scheduling tables
for the next ∆ time steps, and, after these ∆ time steps, receives
a reward together with the next observation. We define O, A,
and R as follows.

Observations O = 〈λv,s |v ∈ V, s ∈ S〉, where λv,s is the
data rate summed up over all flows arriving at ingress v and
requesting service s, averaged over the previous interval of
length ∆. If v is not an ingress, λv,s = 0.

In our previous work [15], DeepCoord also observed node
load uv =

rv (t)
capv
∈ [0, 1] at v over the last ∆ time steps (uv = 1

if capv = 0). However, we found that this observation usually
does not improve DeepCoord’s performance (see Fig. 2b). In
fact, the agent can completely change all scheduling rules with
a single action, such that the observed node load uv from the
previous interval is no relevant indication for the node load in
the next interval, even with constant ingress data rates. Even
without this observation, the agent implicitly still learns about
the network’s capacities. It is rewarded for successful flows
and punished for dropped flows when scheduling to nodes
or links with insufficient capacity. Thus, we do not include
uv in observations O here to avoid unnecessary complexity
for DeepCoord and further reduce our requirements regarding
monitoring.

Actions A = 〈pv,s,c,v′ |v, v′ ∈ V, s ∈ S, c ∈ Cs〉, where
pv,s,c,v′ ∈ [0, 1] is the probability for scheduling a flow
arriving at node v, requesting component c of service s
to be processed at node v′. This results in a probability
distribution with

∑
v′∈V pv,s,c,v′ = 1. As different scheduling

probabilities are explored in the POMDP, it is unlikely that
probabilities are set to exactly 0 %. To avoid sending small
fractions of traffic to many nodes, we further process these
probabilities as follows. We introduce a threshold pthres and set
all probabilities pv,s,c,v′ < pthres to 0 during post-processing.
We then normalize each scheduling table row to ensure that the
probabilities again sum up to 1, i.e., flows are still scheduled
and processed at nodes other than v′. Finally, we apply these
processed scheduling tables to the network and also use them
for training (see Sec. IV-C).

Reward R = U∆. Here, U∆ can correspond to any of the
three types of utility functions defined in Sec. III-C, i.e.,
optimizing either an individual objective, a weighted sum of
multiple objectives, or a custom utility function. In either case,
the reward signal is computed based only on metrics collected
in the last ∆ time steps. In the example of U∆ = of , U∆
would only consider the successful and dropped flows in the
last monitoring interval ∆, which are most affected by the
previous action. Internally, DeepCoord maximizes the sum of
discounted rewards to optimize long-term utility. We evaluate
DeepCoord with different utility functions for optimizing
varying objectives in Sec. V-D.

DeepCoord

Ac
to

r

schedule,
placement

Network monitoring

C
rit

ic

1

2

34

Ad
ap

te
r

Fig. 3: In our proposed framework, the actor-critic DRL agent
iteratively interacts with the network through an adapter.

C. DRL Service Coordination

DeepCoord is based on DDPG [16], which can handle large,
continuous action spaces such as A in our POMDP, unlike
previous algorithms like deep Q-learning [47]. DDPG is an
off-policy actor-critic algorithm, i.e., it learns from buffered
batches of previous experience using neural networks for both
actor µθ and critic Qφ . The critic approximates the long-
term value Qφ(o, a) of action a after observation o based on
immediate reward r and expected future rewards. Critic Qφ is
used to train actor µθ . Actions produced by µθ represent the
probabilities of each node’s scheduling table, which should
sum up to 1 for each row (Sec. IV-B). To this end, we split
the output layer of µθ into separate parts for each row in each
scheduling table and apply the softmax activation separately.

To ensure fast, consistent, and good service coordination,
we first train DeepCoord offline until convergence and then
apply the trained agent online (inference). Fig. 3 shows our
framework designed for training and applying DRL for service
coordination. The network provides monitoring data in regular
intervals (step 1). In step 2, an adapter processes the moni-
toring information, retrieving the relevant observation o and
calculating reward r for the previous interval as described in
Sec. IV-B. This architecture allows us to connect DeepCoord
to different kinds of networks or monitoring systems, simply
by implementing a new adapter. In step 3, o and r are used to
train critic Qφ and actor µθ and to choose the next action a
as defined in Sec. IV-B. The adapter uses a to compute the
final scheduling tables for all nodes, derives the scaling and
placement, and applies it to the network (step 4).

Alg. 1 shows the resulting DRL algorithm for training
and inference. DDPG is known for its high training variance
depending on the random seed [48]. To mitigate this problem,
we propose to train k DRL agents in parallel with different
random seeds, e.g., one per available CPU core (ln. 1–2). After
training, the best agent can be selected automatically based on
the achieved reward. During training, new experience is added
to the buffer B and batches b of size N are sampled to train
critic and actor (ln. 5–9). For training stability, target critic Qφ′

and actor µθ′ are updated slowly according to τ (ln. 10–11).
Then, the next action a is selected using the trained actor and
adding Gaussian noise N to encourage exploration (ln. 12).
Finally, a is post-processed as described in Sec. IV-A and
IV-B to derive the final scheduling, scaling, and placement
decisions (ln. 13). We store the processed and actually applied
actions in buffer B for training. After training, we use the
best trained agent for fast inference during online service
coordination (ln. 14). New observations are directly passed to

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021 7

Algorithm 1 DeepCoord Training and Inference

1: k ← num. CPU cores available for training . Training
2: for k DRL agents in parallel do
3: initialize µθ, µθ′,Qφ,Qφ′, B
4: for all ∆ time steps ∈ T do
5: o, r ← adapter.process(monitoring)
6: B

add
←−− (oprev, aprev, r, o)

7: b← sample(B, N)
8: train Qφ minimizing the Bellman error [16]
9: train µθ maximizing Eo[Qφ(o, µθ (o))]

10: Qφ′ ← τQφ + (1 − τ)Qφ′

11: µθ′ ← τµθ + (1 − τ)µθ′
12: a← µθ (o) +N

13: network
apply
←−−−− adapter.process(a)

14: select best trained agent (µθ,Qφ) . Inference
15: for all ∆ time steps ∈ T do
16: o, r ← adapter.process(monitoring)
17: a← µθ (o)

18: network
apply
←−−−− adapter.process(a)

the trained actor µθ to obtain the next action (ln. 17). For best
performance during inference, we do not add noise but exploit
the best action. The selected action is then post-processed and
applied to the network as before (ln. 18).

Offline training of DeepCoord is time-intensive and depends
on random exploration. In contrast, online inference is very
fast [49]. Its complexity is defined by the matrix multiplication
of the observations and neural network weights, which depend
on observation and action space (Sec. IV-B). We empirically
evaluate training and inference complexity for varying network
sizes in Sec. V-E.

D. Implementation and Deployment

We implemented DeepCoord using Python and published
it in an open-source repository [14]. DeepCoord’s actor and
critic neural networks are built with Keras [50] and Tensor-
Flow [51]. DeepCoord follows the common OpenAI Gym in-
terface [52] and interacts with the network through an adapter
that collects and computes the required observations and the
reward. The adapter implementation depends on the specific
network environment. For training and evaluation, we use a
lightweight open-source simulator [53]. For production de-
ployment, systems like Prometheus [12] and Kubernetes [43]
could be interfaced by the adapter for centralized monitoring
and orchestration. Scheduling rules could be installed and
applied in a distributed fashion at all nodes using SDN [54].
The location of the orchestrator and SDN controller could
be optimized using established approaches [55], [56] to mini-
mize the overhead of collecting monitoring data and updating
scheduling rules in very large scenarios. Moreover, we discuss
a hierarchical approach for scalable coordination of very large,
multi-domain networks in our related paper [57]. We leave
further investigation in this direction for future work.

V. NUMERICAL EVALUATION

We evaluate DeepCoord through extensive simulations using
real-world network topologies and realistic traffic patterns. We
describe the details of our evaluation setup in Sec. V-A. In
Sec. V-B, we evaluate how well DeepCoord self-adapts to
scenarios with varying load, traffic patterns, node and link
capacities, and QoS requirements. For each scenario, we train
DeepCoord offline from scratch in a training environment
and then evaluate the trained agent in a separate testing
environment with different random seeds. The agent adapts
to each scenario through self-learning without human inter-
vention or expertise, simply from experience when interacting
with each environment. Sec. V-C investigates DeepCoord’s
generalization capabilities, where it is trained on one scenario
and then tested on other new and unseen scenarios without
any additional training. While the aforementioned experiments
focus on optimizing a single optimization objective, Sec. V-D
explores trade-offs when optimizing multiple competing objec-
tives. Finally, Sec. V-E evaluates the scalability of DeepCoord
to large, real-world network topologies.

A. Evaluation Setup

1) Evaluation Scenarios: We perform extensive simulations
on real-world network topology Abilene [59], which connects
nodes at 11 cities across the United States. In Sec. V-E, we
also evaluate scalability on three larger real-world network
topologies from Europe, China, and across continents, taken
from the Internet Topology Zoo [59]. These topologies contain
information about the position and interconnection of the
network nodes but not about their type (e.g., data center or
small edge server) nor about their compute capacity. Since
DeepCoord does not distinguish between different node types
and is only affected by a node’s capacity capv , we assign
heterogeneous node capacities capv between 0 and 2 compute
units (e.g., CPU cores) uniformly and independently at ran-
dom. By default, we use very high link capacities capl = 1000
but also consider scenarios with more restricted link capacities
(Sec. V-B2). Link delays are based on the distance between
connected nodes. While we successfully tested our approach
with multiple services, for simplicity, we here focus on and
show the results of coordinating a single service s with com-
ponents Cs = 〈cIDS, cproxy, cweb〉. Instances of each component
require resources that increase linearly with increasing total
data rate of flows to process [60]. We assume all flows
requesting this service to have unit data rate (λ f = 1) and
flow length (δf = 1) but consider scenarios with increasingly
complex (and realistic) flow arrival patterns.

In our evaluation, flows arrive over |T | = 20000 time steps
according to different traffic patterns at the network’s ingress
nodes. Ingress nodes are selected randomly per network and
do not change over time. We further set ∆ = 100 time steps,
after which DeepCoord receives new observations and applies
actions. As described in Sec. IV, this means that information
in observations may be delayed by up to 100 time steps. This
is more realistic than the common assumption in related work
of having up-to-date information at each time step.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021 8

2) DRL Hyperparameters: For each scenario, we first
train k = 10 DRL agents in parallel until convergence
(500 episodes). Then, we automatically select the best DRL
agent for inference (Sec. IV-C). We train DeepCoord from
scratch for each scenario but configure fixed values for all
hyperparameters that are used across all scenarios. Thus, no
manual adjustments are required for solving different scenarios
with DeepCoord.

For both actor and critic, we train dense neural net-
works with a single fully connected hidden layer (64 nodes,
ReLU [61]) using the Adam optimizer [62]. We further con-
figured the following hyperparameters: 1) Discount factor γ =
0.99. 2) Soft target updates with τ = 0.0001. 3) Learning
rate α = 0.01 with decay 0.001. 4) Buffer size |B | = 10000
with batch size |b| = 64. 5) For exploration, we use Gaussian
noise with N(0, 0.2). 6) Threshold pthres = 0.1 (see Sec. IV-B).

3) Baseline Algorithms:
• A heuristic for bidirectional scaling and placement, which

we refer to as BSP, from our previous work [11]. BSP jointly
optimizes service scaling and placement as well as flow
assignment using an iterative destroy-and-repair mechanism.

• Shortest path (SP): For each ingress, SP places exactly one
instance per component c ∈ Cs . It follows a simplified
first-fit strategy by instantiating the first component at the
ingress node and each following component at the neighbor
closest to the previous instance. In doing so, SP favors nodes
with fewer existing instances and skips nodes without any
compute capacity (independent of current utilization).

• Load balance (LB): LB instantiates all components at all
nodes with non-zero capacity and schedules flows equally.

SP and LB are similar to the baselines used by Xu et al. [40].
All three algorithms choose actions from action space A—but,
unlike DeepCoord, do not learn from these actions.

Applying BSP to our problem directly works poorly. The
algorithm assumes that all flows run in parallel and compete
for resources, but in our problem, flows arrive sequentially at
each ingress and only overlap partially. For a fair comparison,
we adjusted the input processing of BSP to estimate the
overlapping flows per ∆ time steps. This is an example of how
built-in assumptions limit the applicability of a model-based
algorithm, requiring manual adjustments by experts. We show
both the default and adapted version of BSP in our evaluation.
Unlike DeepCoord, related DRL approaches (Sec. II) are not
available publicly. Thus, a direct comparison is difficult.

4) Execution & Figures: We repeated all experiments with
30 different random seeds on machines with Intel Xeon W-
2145 and 32 GB RAM. Each measurement point in the figures
of this section (Fig. 4–13) represent the mean over these
30 repetitions. The error bars depict the standard deviation.

B. Self-Adaptation to Varying Scenarios
Here, we focus on maximizing the number of successful

flows (UT = of , cf. Sec. III-C) in the Abilene network.
We systematically vary different problem parameters (traffic,
capacities, QoS requirements) and compare the percentage of
successful flows after T time steps for each algorithm. We
train DeepCoord from scratch for each scenario to evaluate
how well it adapts itself to these scenarios.

1) Varying Ingress Nodes and Traffic Patterns: First, we
vary the number of ingress nodes from 1 to 5 and choose
increasingly complex flow arrival patterns. With more ingress
nodes, total traffic increases and the network’s capacities
become saturated such that flows have to be dropped.

The simplest traffic pattern we consider is fixed flow arrival,
where flows arrive in fixed intervals (10 time steps) at each
ingress. Fig. 4a shows the percentage of successful flows for
the different algorithms. As described in Sec. V-A, default
BSP performs poorly, but the manually adapted BSP (“BSP
Ad.”) does much better and only drops flows with more than 3
ingress nodes. SP avoids dropped flows up to 2 ingress nodes
and LB always drops many flows. DeepCoord outperforms all
other algorithms, processing much more flows successfully in
the highly saturated network with 4 and 5 ingress nodes (up
to 76 % more successful flows than adapted BSP).

Fig. 4b shows the results for Poisson flow arrival (mean
inter-arrival time 10 time steps). Due to the randomness in
flow arrival, multiple flows may arrive directly after another in
bursts, which can easily lead to dropped flows. Again, adapted
BSP is slightly better than SP and much better than default
BSP. LB still performs worse than the other algorithms. Still,
DeepCoord outperforms all algorithms. Compared to adapted
BSP, it processes up to 43 % more flows. In particular, it
learns to deal with Poisson flow arrival by not fully utilizing
all resources of a node but leaving some resources free for
handling small bursts.

Next, we consider more realistic flow arrival following a
Markov-modulated Poisson process (MMPP) [63]. The two-
state Markov process randomly switches between flow arrival
with mean inter-arrival time 12 and 8 (50 % higher rate)
every 100 time steps with 5 % probability. Fig. 4c shows
that DeepCoord handles MMPP flow arrival well and, again,
outperforms the other algorithms (up to 41 % better than
adapted BSP).

Finally, Fig. 4d shows the results for flows following
real-world traffic traces that were recorded for the Abilene
network [64]. To simulate increasing load, we enable an
increasing number of ingress nodes where the trace-driven
traffic arrives. Here, adapted BSP is better with low load (1–2
ingress nodes) and SP is better with high load (4–5 ingress
nodes). DeepCoord handles this real-world traffic well and
again outperforms all other algorithms (up to 43 % better than
adapted BSP and 45 % better than SP).

2) Varying Node and Link Capacities: We investigate self-
adaptation of DeepCoord to scenarios with varying node and
link capacity, again, training from scratch for each scenario.
Specifically, we consider MMPP traffic with 4 ingress nodes
on the Abilene network, starting with a total node capacity
of 10 compute units (similar to Sec. V-B1) and then evenly
increasing node capacity. Fig. 5a shows that DeepCoord adapts
well to different node capacities and clearly outperforms all
other algorithms. In comparison, the other algorithms need at
least 67 % more resources to reach high success rates of above
95 %.

Next, we consider scenarios with limited link capacity,
varying capl from 0 to 10 for each link l. In contrast to
all other scenarios, where nodes’ compute resources were

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021 9

1 2 3 4 5
Num. Ingress Nodes

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
[%

]

DeepCoord
BSP
BSP Ad.
SP
LB

(a) Fixed Arrival

1 2 3 4 5
Num. Ingress Nodes

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
[%

]

DeepCoord
BSP
BSP Ad.
SP
LB

(b) Poisson Arrival

1 2 3 4 5
Num. Ingress Nodes

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
[%

]

DeepCoord
BSP
BSP Ad.
SP
LB

(c) MMPP Arrival

1 2 3 4 5
Num. Ingress Nodes

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
[%

]

DeepCoord
BSP
BSP Ad.
SP
LB

(d) Real-World Traffic Trace

Fig. 4: The figures show the percentage of successful flows for an increasing number of ingress nodes, i.e., increasing load,
and increasingly realistic traffic patterns. Compared to other approaches, DeepCoord processes most flows successfully.

20 40 60
Total Node Capacity

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
[%

]

DeepCoord
BSP
BSP Ad.
SP
LB

(a) Varying Node Capacity

0 2 4 6 8 10
Link Capacity

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
[%

]

DeepCoord
BSP
BSP Ad.
SP
LB

(b) Varying Link Capacity

Fig. 5: DeepCoord self-adapts to varying capacities. It lever-
ages increasing node and link capacities to process more flows
successfully, outperforming other approaches.

the bottleneck, here, communication between nodes is the
bottleneck. Such communication-constraint scenarios are not
the main focus of DeepCoord, which uses fixed (shortest) paths
when scheduling flows between nodes rather than routing them
dynamically. Still, DeepCoord achieves more successful flows
than the other algorithms (Fig. 5b) and is the only approach to
achieve success rates of more than 95 %. This indicates that,
even without dynamic routing, it successfully adapts to varying
link capacities by distributing load across different nodes and
corresponding paths.

3) Varying QoS Requirements (Hard Deadlines): Here, we
explore scenarios with MMPP traffic, 4 ingress nodes, and
varying QoS requirements in terms of hard deadlines dhard

s .
As flows are dropped automatically if a hard deadline is not
met, completing flows that exceed the deadline is not possible.
DeepCoord implicitly learns that flows are dropped when their
end-to-end delay is too high—without requiring any explicit
knowledge about these deadlines. Fig. 6 shows that DeepCoord
exploits increasing deadlines by distributing flows to nodes
farther away. This leads to an increasing success rate (Fig. 6a)
and results in higher end-to-end delay within the allowed
deadline (Fig. 6b). Similarly, LB exploits increasing deadlines
and tries to balance load across all nodes as far as possible

20 30 40 50
Deadline dhard

s [ms]

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
[%

]

DeepCoord
BSP
BSP Ad.
SP
LB

(a) Successful Flows

20 30 40 50
Deadline dhard

s [ms]

15

20

25

30

35

Av
g.

 E
nd

-to
-E

nd
 D

el
ay

 [m
s]

DeepCoord
BSP
BSP Ad.
SP
LB

(b) End-to-end Delay

Fig. 6: DeepCoord self-adapts to varying hard deadlines. It
leverages higher deadlines to better distribute load and achieve
higher flow success rates.

with the given deadlines. Still, it achieves much lower success
rates than DeepCoord. In contrast, adapted BSP and SP do
not exploit deadlines beyond 35 ms to increase success rates,
leading to an increasing gap compared to DeepCoord.

C. Generalization to Unseen Scenarios

For the different scenarios of Sec. V-B, we always train
DeepCoord from scratch but reuse the same hyperparameter
settings. This allows to fully automate training and applying
DeepCoord to different scenarios. In practice, a trained agent
still needs to perform reasonably well when facing a new
scenario, e.g., due to changes in load or traffic. Training a
new agent optimized for the new scenario can take hours,
during which the old agent is still being used. To support such
generalization, we define our observations and reward based on
generally-available information and normalize observations,
actions, and rewards to be in a similar range (Sec. IV-B).

We investigate generalization of DeepCoord to scenarios
with unseen load. In particular, we train five different Deep-
Coord agents on MMPP traffic with 1–5 ingress nodes, respec-
tively, representing scenarios with low to high load. Without
any additional training, we then test all five DeepCoord agents
on MMPP traffic with 4 ingress nodes. Fig. 7a shows that, as

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021 10

Algorithms
0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
[%

]

D.C. (1 in.)
D.C. (2 in.)
D.C. (3 in.)
D.C. (4 in.)

D.C. (5 in.)
BSP Ad.
SP

(a) Unseen Ingress Nodes

Algorithms
0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
[%

]

DeepCoord (Fixed)
DeepCoord (Poission)
DeepCoord (MMPP)
BSP Ad.
SP

(b) Unseen Traffic Pattern

Fig. 7: DeepCoord generalizes to new scenarios with previ-
ously unseen ingress nodes (a) and traffic patterns (b).

expected, the DeepCoord agent trained and tested on 4 ingress
nodes (abbreviated as “D.C. (4 in.)”) performs best. However,
also the agents trained on 2, 3, and 5 ingress nodes generalize
well to unseen traffic from 4 ingress nodes. In fact, they
achieve a similar percentage of successful flows as the agent
trained and tested on 4 ingress nodes and still outperform
adapted BSP and SP. Only the agent trained on a single ingress
node leads to slightly worse results when generalizing to much
higher load with 4 ingress nodes. Still, its performance is
comparable with SP’s.

We also study generalization of DeepCoord to scenarios
with new traffic patterns. Specifically, we train one agent on
fixed flow arrival and another on Poisson flow arrival and
confront both with previously unseen MMPP flow arrival.
Fig. 7b shows the successful flows for both cases in the
Abilene network with 4 ingress nodes. For comparison, we
also show results of DeepCoord trained on MMPP traffic and
of adapted BSP and SP. The figure indicates that DeepCoord
generalizes well to new traffic patterns without significantly
reduced successful flows. The generalized agents still outper-
form adapted BSP and SP.

D. Optimizing Multiple Objectives

In Sec. V-B and V-C, we focus on maximizing successful
flows (of) as the only optimization objective. In practice,
operators often want to optimize multiple objectives. Here,
in Sec. V-D1, we evaluate service coordination with multiple
objectives, investigating the trade-off between maximizing
successful flows and objectives oi , on, and od , defined in
Sec. III-C. We also consider a more complex, custom objective
function for supporting soft deadlines in addition to hard
deadlines in Sec. V-D2. In all cases, we consider MMPP traffic
with 4 ingress nodes on the Abilene network.

1) Weighted Sum of Objectives: First, we consider utility
UT = w f of +wioi as weighted sum of maximizing successful
flows (obj. of) and minimizing the number of placed instances
(obj. oi). The two objectives are often conflicting as maximiz-
ing successful flows may require balancing the load across
more instances. We explore this trade-off by systematically
varying αf ,i = w f = 1 − wi ∈ [0, 1] and training DeepCoord
for each setting. Fig. 8a shows the results in terms of flow

0 0.25 0.5 0.75 1
Few instances f, i High throughput

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

U
til

ity

Total utility
Flow utility
Instance utility

(a) DeepCoord’s Total, Flow, and In-
stance Utility for trade-off αf , i

0 0.25 0.5 0.75 1
Few instances f, i High throughput

0.2

0.0

0.2

0.4

0.6

0.8

U
til

ity

DeepCoord
BSP Ad.
SP

(b) Algorithms’ Total Utility

Fig. 8: DeepCoord effectively navigates trade-off αf ,i between
placing fewer instances and higher throughput.

utility of , instance utility oi , and total, weighted utility UT .
Clearly, αf ,i affects how DeepCoord coordinates services. As
desired, higher αf ,i leads to better flow utility. At the same
time, the agent manages to maintain high instance utility, i.e.,
placing few instances. Only for αf ,i = 1, the agent places
more instances (i.e., lower instance utility) for even higher flow
utility. In the given scenario, there are only enough resources to
process some but not all flows successfully (of < 1) such that
the total utility decreases with increasing αf ,i . Compared to
the other algorithms, DeepCoord achieves significantly better
total utility for all αf ,i values (Fig. 8b), indicating that it learns
to navigate this trade-off well.

0 0.25 0.5 0.75 1
Few nodes f, n High throughput

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

U
til

ity

Total utility
Flow utility
Node utility

(a) DeepCoord’s Total, Flow, and
Node Utility for trade-off αf ,n

0 0.25 0.5 0.75 1
Few nodes f, n High throughput

1.0

0.5

0.0

0.5

1.0

U
til

ity

DeepCoord
BSP Ad.
SP

(b) Algorithms’ Total Utility

Fig. 9: DeepCoord effectively navigates trade-off αf ,n between
utilizing fewer nodes and achieving higher throughput.

Second, we evaluate the trade-off between maximizing
successful flows and minimizing the number of used compute
nodes with UT = w f of +wnon and αf ,n = w f = 1−wn ∈ [0, 1].
A compute node can be turned off if no instances are placed
there, saving costs and energy. Hence, to turn off a node v

and to optimize on, DeepCoord has to learn to select actions
that do not schedule any traffic (below threshold pthres) to any
instance at v. Compared to minimizing the number of instances
(obj. oi), optimizing on is more challenging since DeepCoord
is not rewarded for removing a single instance as long as there
are still other instances placed at the same node. Still, Fig. 9a
shows that DeepCoord explores actions effectively and does
learn different coordination schemes depending on αf ,n. With
low αf ,n (0 or 0.25), DeepCoord drops all flows (of = −1) in

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021 11

favor of optimal node utility (on = 1). As desired, with higher
αf ,n, it learns to process more flows successfully at the cost
of utilizing more nodes. Compared to the other algorithms, its
overall utility is much higher for all values of αf ,n (Fig. 9b).
Hence, while αf ,n has to be chosen carefully, DeepCoord can
successfully optimize both objectives and navigate the trade-
off as controlled by αf ,n.

0 0.25 0.5 0.75 1
Low delay f, d High throughput

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

U
til

ity

Total utility
Flow utility
Delay utility

(a) DeepCoord’s Total, Flow, and De-
lay Utility for trade-off αf ,d

0 0.25 0.5 0.75 1
Low delay f, d High throughput

0.2

0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity
DeepCoord
BSP Ad.
SP

(b) Algorithms’ Total Utility

Fig. 10: DeepCoord effectively navigates trade-off αf ,d be-
tween lower delay (thus, better QoS) and higher throughput.

Finally, we consider the trade-off between maximizing
successful flows and minimizing avg. end-to-end delay with
UT = w f of +wdod and αf ,d = w f = 1−wd ∈ [0, 1]. Again, of

and od are often opposing objectives as processing more flows
successfully may require scheduling them to nodes farther
away, i.e., with higher path and end-to-end delay. Again,
Fig. 10a shows that DeepCoord learns different coordination
schemes corresponding to αf ,d . As desired, higher αf ,d leads
to better flow but worse delay utility. With decreasing αf ,d ,
it favors shorter delays at the cost of more dropped flows.
The agents trained with αf ,d = 0 and αf ,d = 0.25 drop most
flows but process the remaining successful flows with optimal
delay. Again, DeepCoord achieves significantly better total
utility for all αf ,d values than the other algorithms (Fig. 10b).
Overall, DeepCoord learns to effectively optimize multiple,
even competing objectives, where the trade-off between these
objectives can be controlled conveniently via weights αf ,i ,
αf ,n, and αf ,d .

2) Custom Utility Function (Soft Deadlines): In addition to
optimizing individual objectives or weighted sums of multiple
objectives, DeepCoord also supports optimizing custom utility
functions. These functions may specify any complex relation-
ship between available monitoring information and resulting
utility. As an example, we here consider the custom utility
function defined in Sec. III-C. There, the total utility depends
on the successful flows and their delay in terms of meeting
QoS requirements. The utility is high as long as flows’ end-
to-end delay is below a given soft deadline and then gradually
drops off until a hard deadline is reached (Fig. 2a). Unlike
the scenario with hard deadlines in Sec. V-B3, flows are
not dropped automatically if they exceed their soft deadline.
Hence, when only optimizing objective of , DeepCoord would
be unaware of and not adapt to these soft deadlines.

Instead, when optimizing the custom utility function, Fig. 11
shows that DeepCoord does successfully learn to take these

20 30 40 50
Soft Deadline dsoft

s [ms]

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
[%

]

DeepCoord
BSP
BSP Ad.
SP
LB

(a) Successful Flows

20 30 40 50
Soft Deadline dsoft

d [ms]

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Av
g.

 E
nd

-to
-E

nd
 D

el
ay

 [m
s]

DeepCoord
BSP
BSP Ad.
SP
LB

(b) End-to-end Delay

Fig. 11: DeepCoord self-adapts to custom utility functions,
here the utility function in Fig. 2a for soft deadlines. As
a result, it learns to respect soft deadlines and leverages
increasing deadlines to improve the flow success rate.

soft deadlines into account. It not only outperforms the other
algorithms in terms of successful flows (Fig. 11a) but also
adapts to ensure the avg. end-to-end delay stays below the
given soft deadline to maximize utility and QoS. In turn, it
exploits higher soft deadlines to process more flows success-
fully (14 % more with dsoft

s = 50 compared to dsoft
s = 20).

In the scenario here, soft deadlines above dsoft
s = 35 only

enable marginal improvements of successful flows, and further
reducing the avg. end-to-end delay below the soft deadline
does not improve the utility. Hence, the slightly decreased avg.
end-to-end delay for dsoft

s = 50 compared to dsoft
s = 45 could

be a result of randomized training. The other algorithms do
not support QoS optimization with custom utility functions
and are unaware of the soft deadlines. Hence, they do not
adapt to varying soft deadlines and, overall, process fewer
flows successfully than DeepCoord.

0 200 400 600 800 1000 1200 1400
Trainig Episodes

150

100

50

0

Ep
is

od
e

R
ew

ar
d

11 nodes

24 nodes

42 nodes

53 nodes

Fig. 12: Learning curves of DeepCoord when training on
networks of varying sizes.

E. Scalability

Finally, we evaluate the scalability of our approach to
large-scale networks with many nodes. In addition to Abilene
(11 nodes), we consider real-world network topologies BT
Europe (24 nodes), China Telecom (42 nodes), and TiNet (53
nodes) [59], each with 4 ingress nodes and MMPP flow arrival
(as defined in Sec. V-B1).

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021 12

Fig. 12 shows the learning curves for training DeepCoord
offline. The lines show the average episode reward of the
k = 10 agents during training and the error bands show the
standard deviation. As action noise enforces exploration, the
reward is much lower and noisier during training than when
testing the trained agent. Still, the rapid growth of episode
reward within the first 100 episodes indicates that DeepCoord
quickly learns a good coordination policy.

The figure also shows that more training may still increase
performance significantly, e.g., the reward for 42 nodes leaps
around episodes 300 and 600. With much more training, we
expect further leaps in performance. Especially large networks
require excessive training to explore the large action space and
to find an optimal policy. The need for excessive training is
not specific to our approach but a well-known problem in deep
learning [65]. E.g., DeepMind’s famous AlphaGo Zero was
trained over almost 5 million games [66]. Due to limited time
and resources, we had to restrict training to 1500 episodes
(each with |T | = 20000). In future work, we will explore
recent approaches for more efficient training like distributed
DRL [67] and curriculum learning [68].

11 24 42 53
Num. Network Nodes

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
[%

]

DeepCoord
BSP
BSP Ad.
SP
LB

(a) Successful Flows

11 24 42 53
Num. Network Nodes

10
3

10
2

10
1

10
0

10
1

10
2

R
un

tim
e

[s
]

DeepCoord
BSP
BSP Ad.
SP
LB

(b) Algorithm Runtime (log. scale)

Fig. 13: Even in large networks, DeepCoord processes more
flows successfully than existing approaches (a) while main-
taining short inference runtimes (b).

Despite limited offline training, DeepCoord can compete
with or even outperform all baseline algorithms. Fig. 13a
compares the algorithms’ percentage of successful flows (op-
timizing only objective of). As before, adapted BSP performs
comparable to SP and considerably better than the default BSP
version. LB performs worse on small networks but processes
an increasing number of flows successfully with increasing
network size. This is because LB balances traffic equally
among all nodes with resources, leading to lower load per node
and more successful flows for larger networks. Still, DeepCo-
ord processes as many or even more flows successfully. The
difference is especially large for 42 nodes, where there was
a particularly large leap in performance during training (see
Fig. 12). We believe that considerably more training (e.g., in a
commercial setting) could result in similar performance leaps
and even better results for 24 and 53 nodes.

In addition to quality, the runtime of online coordination
decisions is crucial to quickly adapt to changes. Fig. 13b shows
the algorithms’ average runtime per coordination decision on a

logarithmic scale. While offline training is time- and resource-
intensive, applying the trained DRL agent for online inference
only requires tens of milliseconds and is much faster than the
(adapted) BSP heuristic. Compared to DeepCoord, the simple
SP and LB baselines are even faster but at the cost of reduced
coordination performance. Overall, DeepCoord scales well to
large networks while maintaining reasonable runtimes.

VI. CONCLUSION

Our DRL approach, DeepCoord, learns quickly during
offline training and then autonomously provisions and co-
ordinates services online. In contrast to existing approaches
using a priori knowledge for planning, it relies on realistically
available, partial and delayed observations with uncertain
future traffic and without knowledge of network topology
or service structure. It learns without human intervention
or expertise and flexibly adapts to different scenarios or
optimization objectives, even supporting multiple opposing
objectives (throughput, costs, energy, QoS). Hence, we believe
our approach is an important step towards truly driver-less,
self-learning networks and thus towards higher efficiency,
more flexibility, and improved reliability.

Future work could focus on extending and scaling Deep-
Coord to very large networks, e.g., in a distributed or hierar-
chical fashion. Here, it seems promising to further investigate
complexity, reliability, and implementation options in large,
multi-domain networks in combination with SDN.

REFERENCES

[1] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, “Service mesh:
Challenges, state of the art, and future research opportunities,” in IEEE
Conference on Service-Oriented System Engineering (SOSE). IEEE,
2019, pp. 122–1225.

[2] C.-H. Hong and B. Varghese, “Resource management in fog/edge
computing: A survey on architectures, infrastructure, and algorithms,”
ACM Comput. Surv., vol. 52, no. 5, Sep. 2019. [Online]. Available:
https://doi.org/10.1145/3326066

[3] J. Halpern and C. Pignataro, “Service Function Chaining (SFC)
Architecture,” Internet Requests for Comments, RFC Editor, RFC 7665,
2015. [Online]. Available: http://www.rfc-editor.org/info/rfc7665

[4] ITU-T, “Architectural framework for machine learning in future net-
works including IMT-2020 (Y.3172),” ITU-T, Recommendation, 2019.

[5] J. G. Herrera and J. F. Botero, “Resource allocation in nfv: A comprehen-
sive survey,” IEEE Transactions on Network and Service Management,
vol. 13, no. 3, pp. 518–532, 2016.

[6] H. Moens and F. De Turck, “VNF-P: A model for efficient placement of
virtualized network functions,” in International Conference on Network
and Service Management (CNSM). IEEE, 2014, pp. 418–423.

[7] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
S. Davy, “Design and evaluation of algorithms for mapping and
scheduling of virtual network functions,” in Conference on Network
Softwarization (NetSoft). IEEE, 2015, pp. 1–9.

[8] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan,
“Optimal virtual network function placement in multi-cloud service
function chaining architecture,” Computer Communications, vol. 102,
pp. 1–16, 2017.

[9] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, 2018.

[10] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in IEEE
Conference on Cloud Networking (CloudNet). IEEE, 2015.

[11] S. Dräxler, S. Schneider, and H. Karl, “Scaling and placing bidirectional
services with stateful virtual and physical network functions,” in IEEE
Conference on Network Softwarization (NetSoft). IEEE, 2018, pp. 123–
131.

https://doi.org/10.1145/3326066
http://www.rfc-editor.org/info/rfc7665

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021 13

[12] Prometheus, “Documentation,” https://prometheus.io/docs/prometheus/
latest/configuration/configuration/ (March 18, 2020), 2020.

[13] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-
world reinforcement learning,” in International Conference on Machine
Learning (ICML) Workshop on RL4RealLife, 2019.

[14] S. Schneider, A. Manzoor, H. Qarawlus, R. Schellenberg, and
S. Uthe, “DeepCoord GitHub repository,” https://github.com/RealVNF/
DeepCoord (April 7, 2021), 2021.

[15] S. Schneider, A. Manzoor, H. Qarawlus, R. Schellenberg, H. Karl,
R. Khalili, and A. Hecker, “Self-driving network and service coordi-
nation using deep reinforcement learning,” in International Conference
on Network and Service Management (CNSM). IFIP/IEEE, 2020.

[16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in International Conference on Learning Representations
(ICLR), 2016.

[17] Z. Á. Mann, “Allocation of virtual machines in cloud data centers—a
survey of problem models and optimization algorithms,” ACM Comput-
ing Surveys (CSUR), vol. 48, no. 1, pp. 1–34, 2015.

[18] C. Fuerst, S. Schmid, L. Suresh, and P. Costa, “Kraken: Online and
elastic resource reservations for multi-tenant datacenters,” in IEEE
Conference on Computer Communications (INFOCOMM). IEEE, 2016.

[19] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource
optimization with network function virtualization,” IEEE Transactions
on Communications, vol. 64, no. 9, pp. 3746–3758, 2016.

[20] H. A. Alameddine, S. Sebbah, and C. Assi, “On the interplay between
network function mapping and scheduling in VNF-based networks:
A column generation approach,” IEEE Transactions on Network and
Service Management, vol. 14, no. 4, pp. 860–874, 2017.

[21] Q. Zhang, Y. Xiao, F. Liu, J. C. Lui, J. Guo, and T. Wang, “Joint
optimization of chain placement and request scheduling for network
function virtualization,” in IEEE International Conference on Dis-
tributed Computing Systems (ICDCS). IEEE, 2017, pp. 731–741.

[22] L. Gu, D. Zeng, S. Tao, S. Guo, H. Jin, A. Y. Zomaya, and W. Zhuang,
“Fairness-aware dynamic rate control and flow scheduling for network
utility maximization in network service chain,” IEEE Journal on Se-
lected Areas in Communications, vol. 37, no. 5, pp. 1059–1071, 2019.

[23] S. Schneider, L. D. Klenner, and H. Karl, “Every node for itself:
Fully distributed service coordination,” in International Conference on
Network and Service Management (CNSM). IFIP/IEEE, 2020.

[24] M. Blöcher, R. Khalili, L. Wang, and P. Eugster, “Letting off STEAM:
Distributed runtime traffic scheduling for service function chaining,” in
IEEE Conference on Computer Communications (INFOCOMM). IEEE,
2020.

[25] Y. Chen and J. Wu, “Flow scheduling of service chain processing
in a nfv-based network,” IEEE Transactions on Network Science and
Engineering, 2020.

[26] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “FairCloud: Sharing the network in cloud computing,” in
ACM SIGCOMM Conference, 2012, pp. 187–198.

[27] S. Dräxler, H. Karl, and Z. Á. Mann, “JASPER: Joint optimization
of scaling, placement, and routing of virtual network services,” IEEE
Transactions on Network and Service Management, vol. 15, no. 3, pp.
946–960, 2018.

[28] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek,
P. Nowak, B. Strack, P. Witusowski, S. Hand et al., “Autopilot: Workload
autoscaling at google,” in European Conference on Computer Systems,
2020, pp. 1–16.

[29] S. Schneider, N. P. Satheeschandran, M. Peuster, and H. Karl, “Machine
learning for dynamic resource allocation in network function virtualiza-
tion,” in IEEE Conference on Network Softwarization (NetSoft). IEEE,
2020, pp. 122–130.

[30] S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, and B. Mukherjee,
“Auto-scaling network service chains using machine learning and nego-
tiation game,” IEEE Transactions on Network and Service Management,
2020.

[31] C. Hardegen, B. Pfülb, S. Rieger, A. Gepperth, and S. Reißmann, “Flow-
based throughput prediction using deep learning and real-world network
traffic,” in IFIP/IEEE International Conference on Network and Service
Management (CNSM). IFIP/IEEE, 2019, pp. 1–9.

[32] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive vnf scaling and flow routing
with proactive demand prediction,” in IEEE Conference on Computer
Communications (INFOCOMM). IEEE, 2018, pp. 486–494.

[33] X. Zhang, C. Wu, Z. Li, and F. C. Lau, “Proactive VNF provisioning
with multi-timescale cloud resources: Fusing online learning and on-
line optimization,” in IEEE Conference on Computer Communications
(INFOCOMM). IEEE, 2017, pp. 1–9.

[34] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[35] J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal vnf placement via
deep reinforcement learning in sdn/nfv-enabled networks,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 2, pp. 263–278, 2020.

[36] X. Wang, C. Wu, F. Le, and F. C. Lau, “Online learning-assisted VNF
service chain scaling with network uncertainties,” in IEEE International
Conference on Cloud Computing (CLOUD). IEEE, 2017, pp. 205–213.

[37] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang,
“NFVdeep: adaptive online service function chain deployment with
deep reinforcement learning,” in International Symposium on Quality
of Service, 2019, pp. 1–10.

[38] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A deep reinforce-
ment learning approach for vnf forwarding graph embedding,” IEEE
Transactions on Network and Service Management, vol. 16, no. 4, pp.
1318–1331, 2019.

[39] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, “Virtual network function placement optimization with deep
reinforcement learning,” IEEE Journal on Selected Areas in Communi-
cations, vol. 38, no. 2, pp. 292–303, 2019.

[40] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE International Conference on Computer Communi-
cations (INFOCOMM). IEEE, 2018, pp. 1871–1879.

[41] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning
for dynamic power allocation in wireless networks,” IEEE Journal on
Selected Areas in Communications, vol. 37, no. 10, pp. 2239–2250,
2019.

[42] L. Gu, D. Zeng, W. Li, S. Guo, A. Y. Zomaya, and H. Jin, “Intelli-
gent VNF orchestration and flow scheduling via model-assisted deep
reinforcement learning,” IEEE Journal on Selected Areas in Communi-
cations, 2019.

[43] Cloud Native Computing Foundation, “Kubernetes: Production-grade
container orchestration,” https://kubernetes.io/ (Jan 31, 2020), 2020.

[44] H. Yu, J. Yang, and C. Fung, “Fine-grained cloud resource provisioning
for virtual network function,” IEEE Transactions on Network and
Service Management, 2020.

[45] Amazon Web Services (AWS), “AWS docs (traffic dials),”
https://docs.aws.amazon.com/global-accelerator/latest/dg/
about-endpoint-groups-traffic-dial.html (March 18, 2020), 2020.

[46] L. Schiff, S. Schmid, and P. Kuznetsov, “In-band synchronization for
distributed SDN control planes,” ACM SIGCOMM Computer Commu-
nication Review, vol. 46, no. 1, pp. 37–43, 2016.

[47] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[48] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in AAAI Conference on
Artificial Intelligence, 2018.

[49] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
Neural networks for perception. Elsevier, 1992, pp. 65–93.

[50] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd,
2017.

[51] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016, pp. 265–283.

[52] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv preprint
arXiv:1606.01540, 2016.

[53] S. Schneider, A. Manzoor, H. Qarawlus, R. Schellenberg, and S. Uthe,
“Service coordination simulator GitHub repository,” https://github.com/
RealVNF/coord-sim (January 21, 2021), 2021.

[54] Q. Wei, D. Perez-Caparros, and A. Hecker, “Dynamic flow rules in
software defined networks,” in European Workshop on Software-Defined
Networks (EWSDN). IEEE, 2016, pp. 25–30.

[55] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel,
and M. Hoffmann, “Heuristic approaches to the controller placement
problem in large scale SDN networks,” IEEE Transactions on Network
and Service Management, vol. 12, no. 1, pp. 4–17, 2015.

[56] D. Zhou, Z. Yan, Y. Fu, and Z. Yao, “A survey on network data
collection,” Journal of Network and Computer Applications, vol. 116,
pp. 9–23, 2018.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://github.com/RealVNF/DeepCoord
https://github.com/RealVNF/DeepCoord
https://kubernetes.io/
https://docs.aws.amazon.com/global-accelerator/latest/dg/about-endpoint-groups-traffic-dial.html
https://docs.aws.amazon.com/global-accelerator/latest/dg/about-endpoint-groups-traffic-dial.html
https://github.com/RealVNF/coord-sim
https://github.com/RealVNF/coord-sim

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021 14

[57] S. Schneider, M. Jürgens, and H. Karl, “Divide and conquer: Hierar-
chical network and service coordination,” in IFIP/IEEE International
Symposium on Integrated Network Management (IM), 2021.

[58] O. Tange et al., “GNU parallel – the command-line power tool,” The
USENIX Magazine, vol. 36, no. 1, pp. 42–47, 2011.

[59] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

[60] M. Peuster, S. Schneider, and H. Karl, “The softwarised network data
zoo,” in International Conference on Network and Service Management
(CNSM). IEEE/IFIP, 2019, online Dataset: https://sndzoo.github.io/
(accessed January 21, 2021).

[61] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural net-
works,” in Conference on Artificial Intelligence and Statistics (AISTATS),
2011, pp. 315–323.

[62] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference for Learning Representations, 2015.

[63] W. Fischer and K. Meier-Hellstern, “The Markov-modulated poisson
process (MMPP) cookbook,” Performance evaluation, vol. 18, no. 2,
pp. 149–171, 1993.

[64] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–
Survivable Network Design Library,” Networks, vol. 55, no. 3, pp. 276–
286, 2010.

[65] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consider-
ations for deep learning in NLP,” in Annual Meeting of the Association
for Computational Linguistics (ACL), 2019.

[66] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[67] S. Schneider, H. Qarawlus, and H. Karl, “Distributed online service
coordination using deep reinforcement learning,” in IEEE International
Conference on Distributed Computing Systems (ICDCS), 2021.

[68] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu,
“Automated curriculum learning for neural networks,” in International
Conference on Machine Learning (ICML), 2017.

Stefan Schneider obtained his master’s degree in
2017 at the Paderborn University, Germany. He
is currently pursuing his Ph.D., working as a re-
search associate at the university’s computer net-
works group. His main research interests are network
softwarization, cloud computing, 5G and beyond—
particularly in combination with machine learning.
He has worked on multiple large research projects
with industry partners and has been leading his own
research project (RealVNF) in 2018–2021.

Ramin Khalili received his B.Sc. from Shiraz Uni-
versity, his M.Sc. from the Sharif University of
Technology, both in Iran, and his Ph.D. in com-
puter networks and distributed systems from UPMC,
France. He was with the University of Massachusetts
at Amherst, EPFL, and the Telekom Innovation Lab-
oratories in Berlin, before joining the Huawei Re-
search Center in Munich, Germany. Ramin published
over thirty scientific papers and received multiple
best paper awards during these years.

Adnan Manzoor received the B.Tech. degree in
Computer Science from the University of Delhi,
India, in 2017. He is currently pursuing the M.Sc.
degree in Computer Science from the University of
Paderborn, Germany. His main research and profes-
sional interests involve network virtualization, rein-
forcement learning, and natural language processing.

Haydar Qarawlus received his B.Sc. in Information
Technology from the American University of Iraq,
Sulaimani in 2016. He received his M.Sc. in Com-
puter Science in 2020 from Paderborn University in
Germany. His main research interests are network
softwarization, software engineering, machine learn-
ing, and cloud computing.

Rafael Schellenberg is a student research assistant
at the Computer Networks research group at Pader-
born University, Germany. He is currently pursuing
his bachelor’s degree in computer engineering.

Holger Karl heads the Computer Networks research
group in Paderborn University. He has two main
research interests; the first one is advanced wireless
network, e.g., cooperative diversity techniques and
resource management in factory-floor automation.
His second interest is future Internet, specifically the
design and architecture of protocol stacks and uni-
fying concepts like SDN and NFV across different
scenario types.

Artur Hecker (MSc Universität Karlsruhe and PhD
ENST, Paris) is Director of networking research at
the Advanced Wireless Technology Laboratory of
Huawei Munich Research Center. From 2006 to
2013, Artur was Associate Professor at Télécom
ParisTech, where he was leader of Security and
Networking research. Overall, Artur looks back at
almost 20 years of entrepreneurial, academic and
industry experience in networks, systems and system
security.

https://sndzoo.github.io/

	Introduction
	Related work
	Conventional Approaches without DRL
	Self-Learning Approaches with DRL

	Problem Statement
	Problem Parameters
	Decision Variables and Network State
	Objectives

	DRL Approach: DeepCoord
	Joint Scheduling, Scaling, and Placement
	MDP with Partial Observability
	DRL Service Coordination
	Implementation and Deployment

	Numerical Evaluation
	Evaluation Setup
	Evaluation Scenarios
	DRL Hyperparameters
	Baseline Algorithms
	Execution & Figures

	Self-Adaptation to Varying Scenarios
	Varying Ingress Nodes and Traffic Patterns
	Varying Node and Link Capacities
	Varying QoS Requirements (Hard Deadlines)

	Generalization to Unseen Scenarios
	Optimizing Multiple Objectives
	Weighted Sum of Objectives
	Custom Utility Function (Soft Deadlines)

	Scalability

	Conclusion
	References
	Biographies
	Stefan Schneider
	Ramin Khalili
	Adnan Manzoor
	Haydar Qarawlus
	Rafael Schellenberg
	Holger Karl
	Artur Hecker

