Self-Driving Network and Service Coordination
Using Deep Reinforcement Learning

Stefan Schneider*, Adnan Manzoor, Haydar Qarawlus,

Rafael Schellenberg, Holger Karl

Paderborn University

{stschn, adnan904, garawlus, srafael, hkarl } @mail.upb.de

Abstract—Modern services comprise interconnected compo-
nents, e.g., microservices in a service mesh, that can scale and
run on multiple nodes across the network on demand. To process
incoming traffic, service components have to be instantiated and
traffic assigned to these instances, taking capacities and changing
demands into account. This challenge is usually solved with
custom approaches designed by experts. While this typically
works well for the considered scenario, the models often rely
on unrealistic assumptions or on knowledge that is not available
in practice (e.g., a priori knowledge).

We propose a novel deep reinforcement learning approach that
learns how to best coordinate services and is geared towards
realistic assumptions. It interacts with the network and relies on
available, possibly delayed monitoring information. Rather than
defining a complex model or an algorithm how to achieve an
objective, our model-free approach adapts to various objectives
and traffic patterns. An agent is trained offline without expert
knowledge and then applied online with minimal overhead. Com-
pared to a state-of-the-art heuristic, it significantly improves flow
throughput and overall network utility on real-world network
topologies and traffic traces. It also learns to optimize different
objectives, generalizes to scenarios with unseen, stochastic traffic
patterns, and scales to large real-world networks.

I. INTRODUCTION

Service provisioning and coordination in networks with
geographically and topologically distributed compute nodes is
an ongoing challenge [1], [2]. In edge and fog computing,
this challenge is exacerbated by limited compute capacities
as well as link delay between the nodes [2]. Furthermore,
service demand in terms of incoming flows is also distributed
across the network and varies over time. Services can consist
of multiple interconnected components, which process incom-
ing flows. Examples are microservices in a service mesh or
chained virtual network functions (VNFs) in network function
virtualization (NFV) [3]. Each component can run on any node
in the network and scale flexibly according to the current
demand. Service coordination requires online decisions how
to scale and where to instantiate each component as well as
how to schedule incoming flows to these instances.

While service coordination has been the focus of intensive
study [2], [4], most existing work has three major limitations.

978-3-903176-31-7 (©2020 IFIP

Ramin Khalili* and Artur Hecker
Huawei
{ramin khalili, artur.hecker} @huawei.com
*Corresponding authors

First, existing work mostly focuses on long-/medium-term
planning how to scale and place service components based
on given service deployment requests. In doing so, hard-wired
chains of component instances are placed in the network to
process all incoming flows. This is problematic as operational
reality often diverges from any initial plan. For example, actual
service demand by users likely differs from the expected load
in a given service deployment request. Hence, scaling, place-
ment, and flow scheduling should be adjusted dynamically and
online according to the actual service demand.

Second, existing approaches typically use heuristics or nu-
merical solvers and rely on carefully designed models tailored
to specific scenarios and built on corresponding assumptions.
Applying them to scenarios with slightly different assumptions
or new optimization objectives (e.g., QoS) may again require
time-consuming manual adjustments by experts.

Third, these models often rely on information that is not
available in practice, such as a priori traffic knowledge. In
practice, complete knowledge about current load and incoming
traffic is not available instantly or even a priori but only
after monitoring, often done periodically (e.g., default 1 min in
Prometheus [5]). Within such a monitoring interval, numerous
flows may arrive stochastically from users at various ingress
nodes and need to be processed by service components even
before information about these flows is globally available.

To overcome these limitations, we propose a novel approach
for autonomous service provisioning and coordination using
model-free deep reinforcement learning (DRL). We train a
DRL agent offline, where it learns just from interaction with
the network environment, using its previous actions and expe-
rience as feedback. The trained DRL agent then autonomously
provisions services without built-in expert knowledge. It de-
cides and periodically adapts rules for dynamic runtime flow
scheduling and derives service scaling and placement accord-
ingly in a centralized, online approach. In doing so, it does not
require a priori traffic or complete network knowledge. Instead,
it relies on monitoring data that is only intermittently avail-
able and that contains only aggregated, slightly delayed, and
uncertain information. The trained agent can handle stochastic
and bursty traffic, optimize QoS, generalize to new scenarios,

and scale to large, real-world network topologies while making

decisions within milliseconds. It does so not by deciding on

each flow individually but rather by determining and updating
rules for each node in the network. These rules are then used
purely locally to decide how to treat an actual flow.

Overall, our contributions are:

o We define the problem of online service provisioning and
coordination based on available monitoring information.

o We address the problem by formalizing a partially observ-
able Markov decision process (POMDP), which we use for
our novel, self-learning DRL approach.

e Our DRL approach consistently outperforms state-of-the-
art heuristics, requiring much less resources to ensure high
success rates on real-world network topologies. It also gen-
eralizes to unseen traffic patterns, learns to optimize multiple
objectives and scales to networks of realistic size while only
relying on information that is available in practice.

« For reproducibility, we make our code publicly available [6].

II. RELATED WORK

Many researchers have addressed service scaling and place-
ment, often in cloud or edge computing [2], [7] or NFV [4],
using established optimization approaches without DRL. For
example, multiple authors [8]-[11] place services offline, as-
suming full a priori traffic knowledge. Other authors [12]-[14]
consider online service scaling and placement but disregard
runtime scheduling of flows. Blocher et al. [15] do schedule
flows dynamically at runtime but assume a given fixed place-
ment. In contrast, we dynamically scale and place services
and schedule flows jointly online. Such joint coordination is
important to successfully balance trade-offs [16], [17].

In recent years, multiple authors used machine learning for
traffic prediction [18] and pro-active service coordination [19],
[20]. We see this as promising, complementary research direc-
tion that could be combined with DRL in future work.

Recently, first DRL approaches related to our work have
been proposed. Multiple authors address online service
placement under changing load [21]-[24], some considering
stochastic traffic and QoS [23]. In contrast to our approach,
Pei et al. [21] rely on a simulated copy of the network to
quickly test, evaluate, and revert different actions to ultimately
choose the best one in each time step. Furthermore, the final
coordination decisions are made by a separate heuristic. Wang
et al. [22] assume up-front traffic knowledge per time step and
equal flow scheduling between all instances, which could lead
to high end-to-end delays and bad service quality. In contrast
to our work, Xiao et al. [23] and Quang et al. [24] process
incoming flows sequentially, making individual decisions per
flow and service component. To address resulting infeasible
or sub-optimal placements, the authors roll back and undo
previous decisions [23] or apply a separate heuristic algorithm
to fix the DRL agent’s proposed solution [24]. Making such
expensive decisions per flow would not work in our problem,

where we consider rapidly arriving flows and only delayed,
aggregated, and partially observed network state.

Instead of per-flow decisions and similarly to how we sched-
ule incoming flows, Xu et al. [25] assign different portions
of traffic to different paths. However, they focus on traffic
engineering and do not consider service scaling and placement.
The authors further assume traffic knowledge ahead of each
time step and assist their DRL agent with a heuristic. Nasir
and Guo [26] do consider delayed and partial observations but
focus on power allocation in wireless networks.

The recent work by Gu et al. [27] is most related to our
work. Like us, they consider service coordination with flow
scheduling, build on DDPG [28], and optimize a generic
network utility. Still, there are three main differences: 1) Gu
et al. focus on compute costs, whereas we concentrate on
compute capacities (cf. edge computing) and consider link
delays for optimizing QoS. 2) They assume traffic knowledge
ahead of each time step. 3) They support their DRL approach
with a custom heuristic to help with action selection and
exploration. The authors show that both too much or too little
support by the heuristic degrades performance.

Overall, to the best of our knowledge, our work is the first
to consider online service coordination in realistic scenarios
with rapidly arriving flows and delayed, only partially observed
network state. Our model-free approach works without support
from a heuristic, which makes it more versatile and less error-
prone. We hence believe our approach to be much better
applicable to real-world systems than existing work.

III. PROBLEM STATEMENT

We consider the problem of online service provisioning and
coordination in a network of geographically distributed nodes.

A. Problem Inputs

The network G = (V, L) consists of nodes V' and links L
as shown in Fig. 1. Each node v € V' has a compute capacity
cap, € R>o. We consider a single generic compute resource
(e.g., CPU), which can be extended easily to multiple resource
types. Each link [€ L interconnects two nodes and has a delay
d; € Ry that depends, among other factors, on the distance
between the connected nodes.

Traffic arrives as many small flows at ingress nodes in the
network (f1—fs in Fig. 1), e.g., representing users or sensors
requesting a service. Any node can be an ingress node. Each
flow f = (sy,vy,ty, A\, d7) € F is defined by the service s;
it requests, the ingress node vy where it arrives, its time of
arrival ¢y, its requested data rate Ay, and its duration ;. After
traversing the requested service, flows may leave the network
at any node. There can be multiple services available in the
network, where S is the set of all available services. Each
service s € S consists of a chain of components specified
by vector Cs = (cq, ..., ¢,). Services may share components
(e.g., s1 and so both use c; in Fig. 1). Components can be

instantiated at multiple different nodes, where all instances
process flows independently of each other. Set C' contains
all available components of all services. A flow requesting
service s is considered to complete successfully if it traverses
instances of all components in C in the specified order.
Note that these problem inputs are typically not known
completely when solving the problem. In practice, link delays,
flow or service characteristics may be unknown or uncertain.

B. Decision Variables and Network State

We consider centralized scaling and placing services s € S
and scheduling incoming flows f € F' to component instances
of the requested service over time 7'. To this end, we define
two decision variables x.,(t) and ys.(t). Binary variable
Zcw(t) € {0,1} indicates whether an instance of component ¢
is placed at node v at time t (placement). Instances can
be placed at no, one, or multiple nodes (scaling). Variable
yr,c(t) € V indicates at which node v € V' to process a flow f
requesting component c of service sy at time ¢ (scheduling).
We explain how we set ., (t) and yr.(¢) in Sec. IV-A.

In line with the current serverless trend, we do not explicitly
consider intra-node scaling and placement. Instead, we assume
that within a node v, the node’s operating system or systems
like Kubernetes [29] start and scale instances of a component ¢
transparently if x., () = 1.

We further assume that a monitoring system collects and
synchronously reports metrics about each node v € V in fixed
intervals of A > 1 time steps. As many flows may arrive within
A, the monitoring system only reports aggregated information
over the last interval A but no per-flow details. In particular,
we assume the monitored network state to include the number
and aggregated rate of incoming, processed, and dropped flows
at v, the average end-to-end delay of completed flows day,, as
well as the peak resource usage r,(t) € [0,cap,] at v in the
last A time steps (from ¢ — A to ¢). This is in contrast to most
related work, which assumes complete per-flow and often even
a priori knowledge in every single time step.

Used resources 7, (t) depend on decisions z..,,(t) and y (t)
as well as flow length ¢ and requested data rate Ay. Con-
sequently, 7,(t) increases with the total data rate of flows
processed by instances at v. Flows are dropped if they cannot
be processed, e.g., because there is no instance of requested
component c or because v’s resources are already fully utilized.

C. Objectives

We optimize the long-term utility Up =) . w;o; over all T
time steps, which consists of weighted (by w;) objectives o;
that reflect the desired coordination goals. Here, we maximize
utility Ur = wyoy + wqo0q of two objectives oy and og with

F succ I drop

o = € —-1,1 1)
! Fsucc+Fdrop []

—dyy
Od:max{—l, Dag+1}e[—1,1] (2)

N

fa fs

~; A ~ Y
—~ \3;; foa
—h—> [
v1's scheduling table -

]

S|{M| vy | va | v3 |va]| s

$1| €1 | 10% [40% | 50% | 0% | 0%

s1|c2|0% (0% |0% |[0% |100%

sy | e |50% | 50% | 0% | 0% |0%

Fig. 1: Flows continuously arrive at ingress nodes and are
scheduled according to each node’s scheduling table.

Objective oy is the total amount of successful vs. dropped
flows over T time steps. It encourages more successful
flows Fy. and thus higher throughput. Objective o; mini-
mizes the average end-to-end delay per completed flow day,
in time T. Objectives oy and ogq are examples for typical
optimization goals, but it is also possible to choose and
optimize other objectives based on the desired goals and
available monitoring information.

To ensure that o4 and oy are in the same range [—1, 1], we
normalize dg,, with network diameter D in terms of delay.
We further add 1 and cap any values below -1, which may
occur if flows traverse the entire network multiple times back
and forth due to bad service coordination (i.e., dave > D). We
investigate the impact of weights w; and wg in Sec. V-D.

IV. DRL APPROACH

We address service coordination using model-free DRL. Our
DRL agent does not know the network topology, link delays,
service or per-flow details. Instead, it relies on incomplete,
slightly delayed, and uncertain information through periodic
monitoring (updated every A time steps). It learns service co-
ordination without expert knowledge from its own experience.

We describe our service coordination approach in Sec. IV-A
and formalize a partially observable Markov decision pro-
cess (POMDP) in Sec. IV-B. Sec. IV-C outlines our DRL
framework and algorithm.

A. Joint Scheduling, Scaling, and Placement

We design our approach to work for realistic networks
with many rapidly arriving flows. Hence, making per-flow
coordination decisions centrally at the DRL agent would be
highly inefficient and not scalable for large numbers of flows.
Moreover, it would require up-to-date, per-flow knowledge,
which is not available centrally. Instead, we schedule incoming
flows at each node immediately according to rules that are
installed at all nodes in the network. The DRL agent updates
these rules every A time steps, whenever new monitoring data
becomes available.

To this end, we introduce scheduling tables for each node
that indicate where incoming flows should be processed (simi-
lar to AWS traffic dials [30] but with dynamic rather than fixed
quotas). As illustrated in Fig. 1, each scheduling table contains
entries for every service s € S and every corresponding
component ¢ € Cy (here, S = {s1,s2}, C5;, = (c1,¢2),
Cs, = (c1)). The table entries specify at which destination
node to process ¢ by means of a probability distribution over
all nodes. For example in Fig. 1, incoming flows at node v
requesting component ¢; € C,, of s; are scheduled according
to the probabilities in v1’s scheduling table. Here, each flow
is processed locally at v; with 10 % probability, scheduled to
be processed at v with 40 %, and scheduled to vs with 50 %.
Flows belonging to s; that finish processing ¢; at v; and are
then requesting cy are all scheduled to v5. We assume shortest
path routing between nodes, e.g., from vy to vs. The same
component c; also appears in service so, where it could require
different scheduling. Hence, we consider separate scheduling
entries for different services in S.

By deploying these scheduling tables at each node, incoming
flows are scheduled immediately (in O(log|V|)) at runtime
according to these probabilities. That means, y¢(t) is set
to v; with probabilities given for v; and ¢ € Cs,. After
deciding a destination node for processing a flow according
to the scheduling probabilities, the entire flow is sent there.
Using separate scheduling tables for each node allows to
schedule flows differently depending on where they arrive in
the network. In doing so, flows can be scheduled to close-by
nodes, reducing end-to-end delay.

We also derive variable z.,(t) (scaling and placement)
from the scheduling tables but update it only every A time
steps. To avoid dropped flows, we ensure that instances of
component ¢ are available at every node v to which flows
may be scheduled. Specifically, we start at the ingress nodes
with the first component ¢; € C; for each service s and set
Ty v(t) = 1 if there is a non-zero probability for ys ., (t) = v
based on the scheduling tables. Since scheduling probabili-
ties sum up to one, we always place at least one instance
per service component to process incoming flows. We then
continue in a similar fashion for the next component co,
checking the scheduling tables of the nodes where we placed
instances of c;. Based on v;’s scheduling table in Fig. 1, we
would set Zc, o, (t) = ey v (£) = Tegws (1) = ZTegs(t) = 1.
Following this approach, we can jointly decide flow scheduling
probabilities, scaling, and placement by periodically (every A
time steps) updating the scheduling tables for all nodes. In
practice, these updates could be done consistently across the
network using SDN technology [31].

B. MDP with Partial Observability

In real networks, the full network state is huge and can only
be observed partly through monitoring. Hence, we design a
Markov decision process with partial observability (POMDP)

to create and periodically update the scheduling tables as
described in Sec. IV-A. Using a POMDP is novel compared
to related DRL approaches, which mostly assume a fully
observable MDP (see Sec. II). In a POMDP, an agent interacts
with an environment to obtain rewards, which allows the
agent to learn highly-rewarded behavior. Formally, a POMDP
(O, A,P,R) is defined by observation space O, i.e., parts
of the full network state, the agent’s action space .4, the
environment dynamics P, which are typically unknown, and
the reward function R. In our approach described in Sec. IV-A,
the agent interacts with the environment every A time steps. It
receives observations from the last A time steps (e.g., through
monitoring), applies an action to update the scheduling tables
for the next A time steps, and, after these A time steps,
receives a reward together with the next observation. We define
O, A, and R as follows:

Observations O = ({Ays|lv € V,s € S}t {uylv € V}),
where)\, ¢ is the average ingress data rate and u, is the node
load during the last A time steps. Specifically, A, s is the
data rate summed up over all flows arriving at ingress v and
requesting service s, averaged over the previous interval of
length A. If v is not an ingress, A, s = 0. Node load u, =
ry(t)/cap, € [0,1] is the resource usage at v over the last A
time steps, normalized to the capacity of node v. If cap, = 0,
we set u, = 1 to indicate that the node cannot be used.

Actions A = (pysco|v,v € V,s € S,c € Cy), where
Duseco € [0,1] is the probability for scheduling a flow
arriving at node v, requesting component c of service s
to be processed at node v’. This results in a probability
distribution with Ev, cv Pu,s,cor = 1. As different scheduling
probabilities are explored in the POMDP, it is unlikely that
probabilities are set to exactly 0%. To avoid sending small
fractions of traffic to many nodes, we further process these
probabilities as follows. We introduce a threshold pyes and set
all probabilities py s.c.or < Piires t0 O during post-processing.
We then normalize each scheduling table row to ensure that the
probabilities again sum up to 1, i.e., flows are still scheduled
and processed at nodes other than v’. Finally, we apply these
processed scheduling tables to the network and also use them
for training (see Sec. IV-C).

Reward R = Ua. Here, we use Un = wyroy + wqoq as
defined in Sec. III-C but referring only to the utility of the last
A time steps. The DRL agent maximizes the sum of discounted
rewards to optimize the long-term utility. To avoid that the
agent simply drops all flows when trying to optimize o4, we
initialize o4 = —1.

C. DRL Service Coordination

Our DRL algorithm is based on deep deterministic policy
gradient (DDPG) [28], which can handle large, continuous
action spaces such as .4 in our POMDP. DDPG is an off-
policy actor-critic algorithm, i.e., it learns from buffered
batches of previous experience using neural networks for both

Network DRL Agent

monitoring
0N

schedule,

pvass N

-0 |

Fig. 2: DRL service coordination framework.

actor pg and critic (Q¢. The critic approximates the long-
term value Q4 (0,a) of action a after observation o based on
immediate reward r and expected future rewards. Critic Q) is
used to train actor pg. Actions produced by g represent the
probabilities of each node’s scheduling table, which should
sum up to 1 for each row (Sec. IV-B). To this end, we split
the output layer of ug into separate parts for each row in each
scheduling table and apply the softmax activation separately.

To ensure fast, consistent, and good service coordination,
we first train the DRL agent offline until convergence and
then apply the trained agent online (inference). Fig. 2 shows
our framework designed for training and applying DRL for
service coordination. The network provides monitoring data in
regular intervals (step 1). In step 2, an adapter processes the
monitoring information, retrieving the relevant observation o
and calculating reward r for the previous interval as described
in Sec. IV-B. This architecture allows to connect our DRL
agent to different kinds of networks or monitoring systems,
simply by implementing a new adapter. In step 3, o and r
are used to train critic (), and actor pp and to choose the
next action a as defined in Sec. IV-B. The adapter uses a to
compute the final scheduling tables for all nodes, derives the
scaling and placement, and applies it to the network (step 4).

Alg. 1 shows the resulting DRL algorithm for training and
inference. DDPG is known for its high training variance de-
pending on the random seed [32]. As a simple countermeasure,
we propose to train k¥ DRL agents in parallel with different
random seeds, e.g., one per available CPU core (In. 1-2). After
training, the best agent can be selected automatically based on
the achieved reward. During training, new experience is added
to the buffer B and batches b of size N are sampled to train
critic and actor (In. 5-9). For training stability, target critic Q¢
and actor pgs are updated slowly according to 7 (In. 10-11).
Then, the next action a is selected using the trained actor and
adding Gaussian noise N to encourage exploration (In. 12).
Finally, a is post-processed as described in Sec. IV-A and IV-B
to derive the final scheduling, scaling, and placement decisions
(In. 13). We store the processed and actually applied actions
in buffer B for training. After training, we use the best trained
agent for fast inference during online service coordination
(In. 14). New observations are directly passed to the trained
actor ug to obtain the next action (In. 17). For best performance
during inference, we do not add noise but exploit the best

Algorithm 1 DRL Training and Inference

1: k <= num. CPU cores available for training
2: for k DRL agents in parallel do

3 initialize 19, ptgr, Qg, Qp, B

> Training

4 for all A time steps € T do

5 o0, < adapter.process(monitoring)

6: B & (Oprevs Qprev, T 0)

7 b + sample(B, N)

8 train ()4 minimizing the Bellman error [28]
9: train /19 maximizing E,[Q(o, 16(0))]

10: qu/ — TQ¢ + (1 - T)Qd)/

11: wer < T + (L — 7) e

12: a <+ pg(o) + N

13: network <**% adapter.process(a)

14: Select best trained agent (1, Qg) > Inference

15: for all A time steps € T do

16: o, r < adapter.process(monitoring)
17: a < pg(o)

apply
18: network <—— adapter.process(a)

action. The selected action is then post-processed and applied
to the network as before (In. 18).

Offline training of our DRL agent is time-intensive and
depends on random exploration. In contrast, online inference
is very fast [33]. Its complexity is defined by the matrix
multiplication of the observations and neural network weights,
which depend on observation and action space (Sec. IV-B).
We empirically evaluate training and inference complexity for
varying network sizes in Sec. V-E.

We implemented our DRL approach using Python and
publish it in an open-source repository [6]. For production
deployment, systems like Prometheus [5] and Kubernetes [29]
could be interfaced by the adapter for centralized monitoring
and orchestration. Scheduling rules could be installed and
applied in a distributed fashion at all nodes using SDN [34].

V. NUMERICAL EVALUATION
A. Evaluation Setup

1) Evaluation Scenarios: We perform extensive simulations
on real-world network topology Abilene [36], which connects
nodes at 11 cities across the United States. In Sec. V-E, we
also evaluate scalability on three larger real-world network
topologies from Europe, China, and across continents. Each
network has heterogeneous node capacities cap, between 0
and 2 compute units (e.g., CPU cores), assigned uniformly
and independently at random. Link delays are based on the
distance between connected nodes. While we successfully
tested our approach with multiple services, for simplicity, we
focus on coordination of a single service s with components
Cs = (cps, Cproxys Cweb)- Instances of each component require
resources linear to their processed data rate. We assume all

flows requesting this service to have unit data rate (A\y = 1)
and flow length (§; = 1) but consider scenarios with increas-
ingly complex (and realistic) flow arrival patterns.

In our evaluation, flows arrive over |T'| = 20000 time steps
according to different traffic patterns at the network’s ingress
nodes. Ingress nodes are selected randomly per network and do
not change over time. We further set A = 100 time steps, after
which the DRL agent receives new observations and applies
actions. As described in Sec. IV, this means that information
in observations may be delayed by up to 100 time steps. This
is more realistic than the common assumption in related work
of having up-to-date information at each time step.

2) DRL Hpyperparameters: For each scenario, we first
train £ = 10 DRL agents in parallel until convergence
(500 episodes). Then, we automatically select the best DRL
agent for inference (Sec. IV-C). We retrain for each scenario
but configure fixed values for all hyperparameters that are used
across all scenarios. Thus, no manual adjustments are required
for solving different scenarios with our DRL approach.

For both actor and critic, we train dense neural net-
works with a single fully connected hidden layer (64 nodes,
ReLU [37]) using the Adam optimizer [38]. We further config-
ured the following hyperparameters: 1) Discount factor v =
0.99. 2) Soft target updates with 7 = 0.0001. 3) Learning
rate &« = 0.01 with decay 0.001. 4) Buffer size |B| = 10000
with batch size |b| = 64. 5) For exploration, we use Gaussian
noise with N(0, 0.2). 6) Threshold pies = 0.1 (see Sec. IV-B).

3) Baseline Algorithms:

« A state-of-the-art heuristic, BSP, for joint scaling, placement,
and flow assignment from our previous work [14].

« Shortest path (SP): For each ingress, SP places exactly one
instance per component ¢ € (. It follows a simplified
first-fit strategy by instantiating the first component at the
ingress node and each following component at the neighbor
closest to the previous instance. In doing so, SP favors nodes
with fewer existing instances and skips nodes without any
compute capacity (independent of current utilization).

o Load balance (LB): LB instantiates all components at all
nodes with non-zero capacity and schedules flows equally.

SP and LB are similar to the baselines used by Xu et al. [25].

All three algorithms choose actions from action space .A—but,

unlike our DRL approach, do not learn from these actions.

Applying BSP to our problem directly works poorly. The
algorithm assumes that all flows run in parallel and compete
for resources, but in our problem, flows arrive sequentially at
each ingress and only overlap partially. For a fair comparison,
we adjusted the input processing of BSP to estimate the
overlapping flows per A time steps. This is an example of how
built-in assumptions limit the applicability of a model-based
algorithm, requiring manual adjustments by experts. We show
both the default and adapted version of BSP in our evaluation.
Unlike our approach, related DRL approaches (Sec. II) are not
available publicly. Thus, a direct comparison is difficult.

4) Execution: We repeated all experiments with 30 different
random seeds on machines with Intel Xeon W-2145 and 32 GB
RAM. Figures show the mean and standard deviation.

B. Maximizing Successful Flows

Here, we focus on maximizing successful flows (wy = 1
and wgy = 0 in Uyp) in the Abilene network. As evaluation
parameters, we vary the number of ingress nodes from 1 to
5 and choose increasingly complex flow arrival patterns. With
more ingress nodes, total traffic increases and the network’s ca-
pacities become saturated such that flows have to be dropped.
As evaluation metric, we compare the percentage of successful
flows after 1" time steps for each algorithm.

The simplest traffic pattern we consider is fixed flow arrival,
where flows arrive in fixed intervals (10 time steps) at each
ingress. Fig. 3a shows the percentage of successful flows for
the different algorithms (legend in Fig. 3d). As described in
Sec. V-A, default BSP performs poorly, but the manually
adapted BSP (“BSP Ad.”) does much better and only drops
flows with more than 3 ingress nodes. SP avoids dropped flows
up to 2 ingress nodes and LB always drops many flows. Our
DRL approach outperforms all other algorithms. It successfully
processes all flows even in the highly saturated network with
4 ingress nodes and drops fewer flows with 5 ingress nodes
(83 % more successful flows than adapted BSP).

Fig. 3b shows the results for Poisson flow arrival (mean: 10
time steps). Due to the randomness in flow arrival, multiple
flows may arrive directly after another in bursts, which can
easily lead to dropped flows. Again, adapted BSP is slightly
better than SP and much better than default BSP. LB still per-
forms worse but more comparable to the other algorithms. Still,
our DRL approach outperforms all algorithms. Compared to
adapted BSP, it processes up to 60 % more flows. In particular,
it learns to deal with Poisson flow arrival by not fully utilizing
all resources of a node but leaving some resources free for
handling small bursts.

Next, we consider realistic flow arrival following a Markov-
modulated Poisson process (MMPP) [39]. The two-state
Markov process randomly switches between flow arrival with
mean inter-arrival time 12 and 8 (50% higher rate) every
100 time steps with 5% probability. Fig. 3c shows that our
DRL approach handles MMPP flow arrival well and, again,
outperforms the other algorithms.

Finally, Fig. 3d shows the results for flows following
real-world traffic traces that were recorded for the Abilene
network [40]. To simulate increasing load, we enable an
increasing number of ingress nodes where the trace-driven
traffic arrives. Our DRL approach handles this real-world
traffic well and clearly outperforms all other algorithms.

C. Generalization to Unseen Scenarios

For the different scenarios of Sec. V-B, we always retrain
the DRL agent but reuse the same hyperparameter settings.

100 1 100 100 100 \‘
= 80 < 80 = 80 X 80
w
2 60 2 60 2 60 2 60
32 3 2 E]
|73 17 173
8 40 2 40 2 40 # 401 7 DRL
8 3 8 ¥ —¥— BSP
> > > 1=
n %] (%] ‘% —=— BSP Ad.
20 20 20 201 o sp
—<— LB
0 0 0 0
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Num. Ingress Nodes Num. Ingress Nodes

(a) Fixed Arrival (b) Poisson Arrival

Num. Ingress Nodes Num. Ingress Nodes

(c) MMPP Arrival (d) Real-World Traffic Trace

Fig. 3: Our DRL approach processes most flows successfully with increasing load at different flow arrival patterns.

o
S

DRL (Poission)
7. DRL (MMPP)
™ DRL (Fixed)
BSP Ad.

SP

1

80

Successful Flows [%]
Successful Flows [%]

20 40 60

Total Node Capacity Algorithms

(a) Changed Node Capacity (b) Unseen Traffic Pattern

Fig. 4: Generalization to new, previously unseen scenarios.

This allows to fully automate training and applying the DRL
agent to different scenarios. In practice, a trained agent still
needs to perform reasonably well when facing a new scenario,
e.g., due to changes in traffic or capacity. Training a new
agent optimized for the new scenario can take hours, during
which the old agent is still being used. To support such
generalization, we define our observations based on generally
available information and normalize observations, actions, and
rewards to be in a similar range (Sec. IV-B).

We investigate generalization of a DRL agent to scenarios
with gradually increasing node capacity. In particular, we train
the DRL agent on Poisson traffic, 4 ingress nodes, and a total
node capacity of 10 compute units and test it with evenly
increased node capacity. Fig. 4a shows that our DRL agent
generalizes well to different capacities and still outperforms all
other algorithms. In comparison, the other algorithms need at
least 50 % more resources to reach high success rates of 99 %.

We also study generalization of a trained DRL agent to
scenarios with new traffic patterns. Specifically, we train one
agent on fixed flow arrival and another on MMPP flow arrival
and confront both with previously unseen Poisson flow arrival.

s DRL
s BSP Ad.
. SP

0.8
0.5

‘ I _ .
00 l A |
l | |
= Total utility I .
05 = Flow utility - 0.0 i.‘! !l

Delay utility

Utility
Utility

0 025 05 075 1 0 025 05 075 1
Low delay < a - High throughput Low delay « a — High throughput

(a) DRL: Total, Flow, Delay Utility (b) Algorithm Comparison

Fig. 5: Utility with varying objective trade-off a.

Fig. 4b shows the successful flows for both cases in the
Abilene network with 4 ingress nodes. For comparison, we
also show results of a DRL agent trained on Poisson traffic and
of adapted BSP and SP. The figure indicates that our trained
DRL agent generalizes well to new traffic patterns without
significantly reduced successful flows. The generalized agents
still outperform adapted BSP and SP.

D. Optimizing Multiple Objectives

In Sec. V-B and V-C, we focus on optimizing the number of
successful flows (wy = 1, wgq = 0). In practice, operators often
want to optimize multiple objectives. Here, we evaluate service
coordination with varying objective weights w; and wy. These
weights determine the trade-off @ = wy =1 —wq € [0, 1] of
many successful flows (and high throughput) vs. short delays,
which are often opposing objectives.

Fig. 5a shows results of DRL agents trained with varying
« in the case of Poisson traffic and 4 ingress nodes. The
figure shows the flow utility oy, delay utility og4, and total,
weighted utility Ur. Clearly, « affects how our DRL approach
coordinates services. As desired, higher « leads to better flow
but worse delay utility. With decreasing «, it favors shorter
delays at the cost of more dropped flows. The agent trained

0 53 nodes
-

=50 11 nodes

-100

Episode Reward

42 nodes 24 nodes

-150

0 200 400 600 800 1000 1200
Training Episodes

1400

Fig. 6: DRL learning curves for networks of varying sizes.

with a = 0 drops most flows but processes the remaining
successful flows with optimal delay. Compared to the other
algorithms, DRL achieves better total utility for all o values
(Fig. 5b). Hence, while « has to be chosen carefully, our DRL
agent can successfully optimize multiple weighted objectives.

E. Scalability

Finally, we evaluate the scalability of our approach to
large-scale networks with many nodes. In addition to Abilene
(11 nodes), we consider real-world network topologies BT
Europe (24 nodes), China Telecom (42 nodes), and TiNet (53
nodes) [36], each with 4 ingress nodes and Poisson traffic
arrival (mean inter-arrival time: 10 time steps).

Fig. 6 shows the learning curves for training our DRL
approach offline. The lines show the average episode reward of
the k = 10 agents during training and the error bands show the
standard deviation. As action noise enforces exploration, the
reward is much lower and noisier during training than when
testing the trained agent. Still, the rapid growth of episode
reward within the first 100 episodes indicates that the DRL
agent quickly learns a good coordination policy.

The figure also shows that more training may still increase
performance significantly, e.g., the reward for 42 nodes leaps
around episodes 500 and 1300. With much more training, we
expect similar leaps in performance for 53 nodes. Especially
large networks require excessive training to explore the large
action space and to find an optimal policy. The need for exces-
sive training is not specific to our approach but a well-known
problem in deep learning [41]. E.g., Deepmind’s famous
AlphaGo Zero was trained over almost 5 million games [42].
Due to limited time and resources, we had to restrict training
to 1500 episodes (each with |T'| = 20000). In future work, we
will explore recent approaches for more efficient training like
distributed DRL and curriculum learning [43].

Despite limited offline training, our trained DRL agent can
compete with or even outperform all baseline algorithms.
Fig. 7a compares the algorithms’ percentage of successful
flows (with @ = 1). As before, adapted BSP performs
comparable to SP and considerably better than the default BSP
version. LB performs worse on small networks but processes
an increasing number of flows successfully with increasing
network size. This is because LB balances traffic equally

100 102
;
< 80 10
g w 100 ———————1*
S 60 Py
w -1
s £10
7] c
2 40 —— DRL 2 107
S BSP
= -3
2 20 —=— BSP Ad. 10
—— sP .
—— LB 10
0 1 1 1 1
1 24 42 53 11 24 42 53

Num. Network Nodes Num. Network Nodes

(a) Successful Flows (b) Algorithm Runtime (log. scale)

Fig. 7: Comparison of service coordination quality (successful
flows) and runtime with increasing network size and capacity.

among all nodes with resources, leading to lower load per
node and more successful flows for larger networks. Still,
our DRL approach processes as much or even more flows
successfully. The difference is especially large for 42 nodes,
where performance leaped two times during training (see
Fig. 6). We believe that considerably more training (e.g., in a
commercial setting) could result in similar performance leaps
and even better results for 53 nodes.

In addition to quality, runtime of online coordination deci-
sions is crucial to quickly adapt to changes. Fig. 7b shows
the algorithms’ average runtime per coordination decision
on a logarithmic scale. While offline training is time- and
resource-intensive, applying the trained DRL agent online only
requires milliseconds and is much faster than the (adapted)
BSP heuristic. The trained DRL agent scales well to large
networks without significant increase in runtime.

VI. CONCLUSION

Our DRL approach learns quickly during offline training and
then autonomously provisions and coordinates services online.
In contrast to existing approaches using a priori knowledge
for planning, it relies on realistically available, partial and
delayed observations with uncertain future traffic and without
knowledge of network topology or service structure. It learns
without human intervention or expertise and flexibly adapts
to different scenarios or optimization objectives. Hence, we
believe our approach is an important step towards truly driver-
less, self-learning networks and thus towards higher efficiency,
more flexibility, and improved reliability.

ACKNOWLEDGMENTS

We thank Sven Uthe for his valuable contributions to our first prototype.
This work was supported in part by the German Research Foundation within
the Collaborative Research Centre “On-The-Fly Computing” (SFB 901), the
German Federal Ministry of Education and Research under Software Campus
grant 011S17046 (Real VNF), and the European Commission under the 5G-PPP
project FUDGE-5G (H2020-ICT-42-2020 call, grant 957242). The expressed
views are those of the authors and do not necessarily represent these projects.

(1]

[2]

[3]

[4]

[5

[t}

[6

=

(7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

REFERENCES

W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, “Service mesh:
Challenges, state of the art, and future research opportunities,” in /EEE
Conference on Service-Oriented System Engineering (SOSE). 1EEE,
2019, pp. 122-1225.

C.-H. Hong and B. Varghese, “Resource management in fog/edge
computing: A survey on architectures, infrastructure, and algorithms,”
ACM Comput. Surv., vol. 52, no. 5, Sep. 2019. [Online]. Available:
https://doi.org/10.1145/3326066

J. Halpern and C. Pignataro, “Service Function Chaining (SFC)
Architecture,” Internet Requests for Comments, RFC Editor, RFC 7665,
2015. [Online]. Available: http://www.rfc-editor.org/info/rfc7665

J. G. Herrera and J. F. Botero, “Resource allocation in nfv: A comprehen-
sive survey,” IEEE Transactions on Network and Service Management,
vol. 13, no. 3, pp. 518-532, 2016.

Prometheus, “Documentation,” https://prometheus.io/docs/prometheus/
latest/configuration/configuration/ (March 18, 2020), 2020.

S. Schneider, A. Manzoor, H. Qarawlus, and S. Uthe, “DRL network
service coordination GitHub repository,” https://github.com/Real VNF/
deep-rl-network-service-coordination (June 22, 2020), 2020.

Z. A. Mann, “Allocation of virtual machines in cloud data centers—a
survey of problem models and optimization algorithms,” ACM Comput-
ing Surveys (CSUR), vol. 48, no. 1, pp. 1-34, 2015.

H. Moens and F. De Turck, “VNF-P: A model for efficient placement of
virtualized network functions,” in International Conference on Network
and Service Management (CNSM). 1EEE, 2014, pp. 418-423.

R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
S. Davy, “Design and evaluation of algorithms for mapping and schedul-
ing of virtual network functions,” in Conference on Network Softwariza-
tion (NetSoft). 1EEE, 2015, pp. 1-9.

D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan,
“Optimal virtual network function placement in multi-cloud service
function chaining architecture,” Computer Communications, vol. 102,
pp. 1-16, 2017.

T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, 2018.
C. Fuerst, S. Schmid, L. Suresh, and P. Costa, “Kraken: Online and
elastic resource reservations for multi-tenant datacenters,” in IEEE
Conference on Computer Communications (INFOCOMM). 1EEE, 2016.
M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in [EEE
Conference on Cloud Networking (CloudNet). 1EEE, 2015.

S. Drixler, S. Schneider, and H. Karl, “Scaling and placing bidirectional
services with stateful virtual and physical network functions,” in IEEE
Conference on Network Softwarization (NetSoft). 1EEE, 2018, pp. 123—
131.

M. Blocher, R. Khalili, L. Wang, and P. Eugster, “Letting off STEAM:
Distributed runtime traffic scheduling for service function chaining,”
in IEEE Conference on Computer Communications (INFOCOMM), to
appear. 1EEE, 2020.

L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “FairCloud: Sharing the network in cloud computing,” in
ACM SIGCOMM Conference, 2012, pp. 187-198.

S. Drixler, H. Karl, and Z. A. Mann, “JASPER: Joint optimization
of scaling, placement, and routing of virtual network services,” IEEE
Transactions on Network and Service Management, vol. 15, no. 3, pp.
946-960, 2018.

C. Hardegen, B. Pfiilb, S. Rieger, A. Gepperth, and S. ReiBmann, “Flow-
based throughput prediction using deep learning and real-world network
traffic,” in IFIP/IEEE International Conference on Network and Service
Management (CNSM). IFIP/IEEE, 2019, pp. 1-9.

X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive vnf scaling and flow routing
with proactive demand prediction,” in IEEE Conference on Computer
Communications (INFOCOMM). 1EEE, 2018, pp. 486—494.

X. Zhang, C. Wu, Z. Li, and F. C. Lau, “Proactive vnf provisioning
with multi-timescale cloud resources: Fusing online learning and on-
line optimization,” in IEEE Conference on Computer Communications
(INFOCOMM). IEEE, 2017, pp. 1-9.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal vnf placement via
deep reinforcement learning in sdn/nfv-enabled networks,” IEEE Journal
on Selected Areas in Communications, 2019.

X. Wang, C. Wu, F. Le, and F. C. Lau, “Online learning-assisted VNF
service chain scaling with network uncertainties,” in /EEE International
Conference on Cloud Computing (CLOUD). 1EEE, 2017, pp. 205-213.
Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang,
“NFVdeep: adaptive online service function chain deployment with
deep reinforcement learning,” in International Symposium on Quality
of Service, 2019, pp. 1-10.

P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A deep reinforce-
ment learning approach for vnf forwarding graph embedding,” IEEE
Transactions on Network and Service Management, vol. 16, no. 4, pp.
1318-1331, 2019.

Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE International Conference on Computer Communica-
tions (INFOCOMM). 1EEE, 2018, pp. 1871-1879.

Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning
for dynamic power allocation in wireless networks,” IEEE Journal on
Selected Areas in Communications, vol. 37, no. 10, pp. 2239-2250, 2019.
L. Gu, D. Zeng, W. Li, S. Guo, A. Y. Zomaya, and H. Jin, “Intelligent vnf
orchestration and flow scheduling via model-assisted deep reinforcement
learning,” IEEE Journal on Selected Areas in Communications, 2019.
T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in International Conference on Learning Representations
(ICLR), 2016.

Cloud Native Computing Foundation, “Kubernetes: Production-grade
container orchestration,” https://kubernetes.io/ (Jan 31, 2020), 2020.
Amazon Web Services (AWS), “AWS docs (traffic dials),”
https://docs.aws.amazon.com/global-accelerator/latest/dg/
about-endpoint-groups-traffic-dial.html (March 18, 2020), 2020.

L. Schiff, S. Schmid, and P. Kuznetsov, “In-band synchronization for
distributed SDN control planes,” ACM SIGCOMM Computer Communi-
cation Review, vol. 46, no. 1, pp. 37-43, 2016.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in AAAI Conference on
Artificial Intelligence, 2018.

R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
Neural networks for perception. Elsevier, 1992, pp. 65-93.

Q. Wei, D. Perez-Caparros, and A. Hecker, “Dynamic flow rules in
software defined networks,” in European Workshop on Software-Defined
Networks (EWSDN). 1EEE, 2016, pp. 25-30.

O. Tange et al., “GNU parallel — the command-line power tool,” The
USENIX Magazine, vol. 36, no. 1, pp. 42-47, 2011.

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765-1775, 2011.

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural net-
works,” in Conference on Artificial Intelligence and Statistics (AISTATS),
2011, pp. 315-323.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference for Learning Representations, 2015.

W. Fischer and K. Meier-Hellstern, “The Markov-modulated poisson
process (MMPP) cookbook,” Performance evaluation, vol. 18, no. 2,
pp. 149-171, 1993.

S. Orlowski, M. Piéro, A. Tomaszewski, and R. Wessily, “SNDIib 1.0-
Survivable Network Design Library,” Networks, vol. 55, no. 3, pp. 276—
286, 2010.

E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consider-
ations for deep learning in NLP,” in Annual Meeting of the Association
for Computational Linguistics (ACL), 2019.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354-359, 2017.

A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu,
“Automated curriculum learning for neural networks,” in International
Conference on Machine Learning (ICML), 2017.

